polynomial function and sub

Algebra Level 2

sin 3 a + 6 sin 2 a + sin a + 2 cos 2 a 8 sin a 1 \large \frac {\sin^3 a+ 6\sin^2 a + \sin a + 2 \cos^2 a-8}{\sin a -1}

What is the minimum of the expression above?


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Jordan Cahn
Oct 20, 2018

sin 3 a + 6 sin 2 a + sin a + 2 cos 2 a 8 sin a 1 = sin 3 a + 4 sin 2 a + sin a + 2 8 sin a 1 By the pythagorean identity sin 2 a + cos 2 a = 1 = sin 3 a + 4 sin 2 a + sin a 6 sin a 1 = x 3 + 4 x 2 + x 6 x 1 Substituting x = sin a = ( x 1 ) ( x 2 + 5 x + 6 ) x 1 = x 2 + 5 x + 6 \begin{aligned} \frac{\sin^3 a + 6\sin^2 a + \sin a + 2\cos^2 a - 8}{\sin a - 1} &= \frac{\sin^3 a + 4\sin^2 a + \sin a + 2 - 8}{\sin a - 1} && \color{#3D99F6} \text{By the pythagorean identity } \sin^2 a + \cos^2 a = 1 \\ & = \frac{\sin^3 a + 4\sin^2 a + \sin a - 6}{\sin a - 1} \\ & = \frac{x^3 + 4x^2 + x - 6}{x - 1} && \color{#3D99F6} \text{Substituting }x=\sin a \\ &= \frac{(x-1)(x^2 + 5x + 6)}{x-1} \\ &= x^2 + 5x + 6 \end{aligned}

Now, replace x x with sin a \sin a again. The initial expression is equal to sin 2 a + 5 sin a + 6 \sin^2 a + 5\sin a + 6 . To find the minimum, differentiate and set equal to zero: 0 = 2 sin a cos a + 5 cos a = cos a ( 2 sin a + 5 ) \begin{aligned} 0 &= 2\sin a\cos a + 5\cos a \\ &= \cos a(2\sin a + 5) \end{aligned} Either cos a = 0 \cos a = 0 or sin a = 5 2 \sin a = -\frac{5}{2} . The latter is impossible, since 1 sin a 1 -1\leq\sin a \leq 1 . Thus cos a = 0 \cos a = 0 .

When cos a = 0 \cos a = 0 , sin a = ± 1 \sin a = \pm 1 . To determine our minimum, we must plug these values back into our original equation. Since sin a = 1 \sin a = 1 makes the expression undefined (the denominator would be zero), we need only check sin a = 1 \sin a = -1 : ( 1 ) 3 + 6 ( 1 ) 2 + ( 1 ) + 2 ( 0 ) 8 ( 1 ) 1 = 1 + 6 1 2 = 4 2 = 2 \frac{(-1)^3 + 6(-1)^2 + (-1) + 2(0) - 8}{(-1) - 1} = \frac{-1 + 6 - 1}{-2} = \frac{-4}{-2} = 2 We still need to verify that this is indeed a minimum. Remembering that our original expression is equal to sin 2 a + 5 sin a + 6 \sin^2 a + 5\sin a + 6 , it's second derivative is 2 sin 2 a 2 cos 2 a 5 sin a 2\sin^2a - 2\cos^2 a - 5\sin a . For cos a = 0 \cos a = 0 and sin a = 1 \sin a = 1 , the value of this expression is 2 + 5 = 7 > 0 2 + 5 = 7 > 0 Thus we have indeed found a minimum of 2 \boxed{2} .

Wow, i didn't try to contain derivative but i think this is reasonable. Amazing solution!!

Joyce Mao - 2 years, 7 months ago

Well we know that the minimum value of sin A is -1 So we just plug in that in the expression (x+2)(x+3) Voila we get the answer! Why did we do all this

Priti Gupta - 2 years, 7 months ago

Log in to reply

How do we know that the value of f f is minimized when sin a \sin a is minimized?

Jordan Cahn - 2 years, 7 months ago

Log in to reply

(x+2)(x+3) is a quadratic function which is monotone increasing in -1<=x<1 intervals.

Joyce Mao - 2 years, 7 months ago
Chew-Seong Cheong
Oct 23, 2018

f ( a ) = sin 3 a + 6 sin 2 a + sin a + 2 cos 2 a 8 sin a 1 = sin 3 a + 6 sin 2 a + sin a + 2 ( 1 sin 2 a ) 8 sin a 1 = sin 3 a + 4 sin 2 a + sin a 6 sin a 1 By long division = sin 2 a + 5 sin a + 6 = ( sin a + 5 2 ) 2 25 4 + 6 Since min ( ( sin a + 5 2 ) 2 ) = ( 1 + 5 2 ) 2 = 9 4 25 4 + 6 = 2 \begin{aligned} f(a) & = \frac {\sin^3 a+ 6\sin^2 a + \sin a + 2{\color{#3D99F6}\cos^2 a}-8}{\sin a -1} \\ & = \frac {\sin^3 a+ 6\sin^2 a + \sin a + 2{\color{#3D99F6}(1- \sin^2 a)}-8}{\sin a -1} \\ & = \frac {\sin^3 a+ 4\sin^2 a + \sin a -6}{\sin a -1} & \small \color{#3D99F6} \text{By long division} \\ & = \sin^2 a + 5 \sin a + 6 \\ & = {\color{#3D99F6}\left(\sin a + \frac 52\right)^2} - \frac {25}4 + 6 & \small \color{#3D99F6} \text{Since }\min \left( \left({\color{#D61F06}\sin a} + \frac 52\right)^2 \right) = \left({ \color{#D61F06}-1} + \frac 52\right)^2 \\ & = {\color{#3D99F6}\frac 94} - \frac {25}4 + 6 \\ & = \boxed 2 \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...