Polynomial in Cosine

Geometry Level 3

2 cos 3 2 π 7 + cos 2 2 π 7 cos 2 π 7 = ? 2\cos^3\frac{2\pi}7+\cos^2\frac{2\pi}7-\cos\frac{2\pi}7=\,?


This equation is key step to show that it is impossible to draw the regular heptagon with straightedge-and-compass.


The answer is 0.25.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Patrick Corn
Jul 9, 2019

Let ω = e 2 π i / 7 , \omega = e^{2\pi i/7}, so ω 7 = 1. \omega^7 = 1. Then cos 2 π 7 = 1 2 ( ω + 1 / ω ) , \cos \frac{2\pi} 7 = \frac12 (\omega + 1/\omega), by Euler's formula . Then 2 cos 3 2 π 7 + cos 2 2 π 7 cos 2 π 7 = 2 8 ( ω + 1 / ω ) 3 + 1 4 ( ω + 1 / ω ) 2 1 2 ( ω + 1 / ω ) = 1 4 ( ω 3 + 3 ω + 3 / ω + 1 / ω 3 + ω 2 + 2 + 1 / ω 2 2 ω 2 / ω ) = 1 4 + 1 4 ( ω 3 + ω 2 + ω + 1 + 1 / ω + 1 / ω 2 + 1 / ω 3 ) = 1 4 + 1 4 ω 3 ( ω 6 + ω 5 + ω 4 + ω 3 + ω 2 + ω + 1 ) = 1 4 + 1 4 ω 3 1 ω 7 1 ω = 1 4 = 0.25 . \begin{aligned} 2\cos^3 \frac{2\pi}7 + \cos^2 \frac{2\pi}7 - \cos \frac{2\pi}7 &= \frac28 (\omega + 1/\omega)^3 + \frac14 (\omega + 1/\omega)^2 - \frac12(\omega + 1/\omega) \\ &= \frac14(\omega^3 + 3\omega + 3/\omega + 1/\omega^3 + \omega^2 + 2 + 1/\omega^2 - 2\omega - 2/\omega) \\ &= \frac14 + \frac14(\omega^3 + \omega^2 + \omega + 1 + 1/\omega + 1/\omega^2 + 1/\omega^3) \\ &= \frac14 + \frac1{4\omega^3} ( \omega^6 + \omega^5 + \omega^4 + \omega^3 + \omega^2 + \omega + 1) \\ &= \frac14 + \frac1{4\omega^3} \frac{1-\omega^7}{1-\omega} \\ &= \frac14 = \fbox{0.25}. \end{aligned}

This implies that cos 2 π 7 \cos \frac{2\pi}7 is a root of the polynomial 8 x 3 + 4 x 2 4 x 1 , 8x^3+4x^2-4x-1, which can be easily checked to be irreducible over the rational numbers (e.g. by the rational root theorem ), so its degree is 3 , 3, which implies that it is not constructible .

X = 2 cos 3 2 π 7 + cos 2 2 π 7 cos 2 π 7 = 1 2 ( 4 cos 3 2 π 7 3 cos 2 π 7 ) + 3 2 cos 2 π 7 + 1 2 ( cos 4 π 7 + 1 ) cos 2 π 7 = 1 2 ( cos 2 π 7 + cos 4 π 7 + cos 6 π 7 ) + 1 2 See proof = 1 2 ( 1 2 ) + 1 2 = 1 4 = 0.25 \begin{aligned} X & = 2\cos^3 \frac {2\pi}7 + \cos^2 \frac {2\pi}7 - \cos \frac {2\pi}7 \\ & = \frac 12 \left(4\cos^3 \frac {2\pi}7 - 3\cos \frac {2\pi}7\right) + \frac 32 \cos \frac {2\pi}7 + \frac 12 \left(\cos \frac {4\pi}7 + 1\right) - \cos \frac {2\pi}7 \\ & = \frac 12 \left(\color{#3D99F6} \cos \frac {2\pi}7 + \cos \frac {4\pi}7 + \cos \frac {6\pi}7 \right) + \frac 12 & \small \color{#3D99F6} \text{See proof} \\ & = \frac 12 \left(\color{#3D99F6} - \frac 12 \right) + \frac 12 \\ & = \frac 14 = \boxed{0.25} \end{aligned}


Proof for k = 1 n cos ( 2 k 2 n + 1 ) = 1 2 \color{#3D99F6} \displaystyle \sum_{k=1}^n \cos \left(\frac {2k}{2n+1}\right) = - \frac 12

Pi Han Goh
Jul 9, 2019

Disclaimer: I cheated with a calculator and I reverse-engineered the answer.

We start with a famous trigonometric identity, cos 2 π 7 + cos 4 π 7 + cos 6 π 7 = 1 2 2 cos 6 π 7 + 2 cos 4 π 7 + 2 cos 2 π 7 + 1 = 0. \cos\frac{2\pi}7 + \cos\frac{4\pi}7 + \cos\frac{6\pi}7 = -\frac12 \quad \Leftrightarrow \quad 2\cos\frac{6\pi}7 + 2\cos\frac{4\pi}7 + 2\cos\frac{2\pi}7 + 1 = 0.

Let x = cos 2 π 7 x = \cos\frac{2\pi}7 , using double angle formula and triple angle formula, we have cos 4 π 7 = 2 x 2 1 \cos\frac{4\pi}7 = 2x^2 - 1 and cos 6 π 7 = 4 x 3 3 x \cos\frac{6\pi}7 = 4x^3 - 3x . And the equation above can be written as 2 ( 4 x 3 3 x ) + 2 ( 2 x 2 1 ) + 2 x + 1 = 0 4 ( 2 x 3 + x 2 x ) = 1. 2(4x^3 - 3x) + 2(2x^2 - 1) + 2x + 1 = 0 \quad \Leftrightarrow \quad 4(2x^3 + x^2 - x) = 1. Hence, the answer is simply 2 x 3 + x 2 x = 1 4 = 0.25 2x^3 + x^2 - x = \frac14 = \boxed{0.25} .

Now I'm wondering how does this relate to the author's last statement:

This equation is key step to show that it is impossible to draw the regular heptagon with straightedge-and-compass.

Hi, Pi Han Goh.You could read this .

Brian Lie - 1 year, 11 months ago

Log in to reply

Beautiful. Thank you.

Pi Han Goh - 1 year, 11 months ago

Log in to reply

Also, Mathologer recently did a video that illustrates the proof in the linked pdf above.

Chris Lewis - 1 year, 11 months ago

Direct evaluation: 2 cos 3 ( 2 π 7 ) + cos 2 ( 2 π 7 ) cos ( 2 π 7 ) 1 4 2 \cos ^3\left(\frac{2 \pi }{7}\right)+\cos ^2\left(\frac{2 \pi }{7}\right)-\cos \left(\frac{2 \pi }{7}\right) \Rightarrow \frac14 .

1 2 + 1 4 i e 1 14 ( 3 i π ) 1 4 i e 3 i π 14 1 4 e 1 7 ( 3 i π ) 1 4 e 3 i π 7 1 4 i e 1 14 ( 9 i π ) + 1 4 i e 9 i π 14 1 4 ( 2 1 7 + ( 1 ) 2 / 7 ( 1 ) 3 / 7 + ( 1 ) 4 / 7 ( 1 ) 5 / 7 + ( 1 ) 6 / 7 ) 1 4 ( 2 1 ) 1 4 \frac{1}{2}+\frac{1}{4} i e^{-\frac{1}{14} (3 i \pi )}-\frac{1}{4} i e^{\frac{3 i \pi }{14}}-\frac{1}{4} e^{-\frac{1}{7} (3 i \pi )}-\frac{1}{4} e^{\frac{3 i \pi }{7}}-\frac{1}{4} i e^{-\frac{1}{14} (9 i \pi )}+\frac{1}{4} i e^{\frac{9 i \pi }{14}} \Rightarrow \frac{1}{4} \left(2-\sqrt[7]{-1}+(-1)^{2/7}-(-1)^{3/7}+(-1)^{4/7}-(-1)^{5/7}+(-1)^{6/7}\right) \Rightarrow \frac14\,(2-1) \Rightarrow \frac14

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...