Polynomial Inequality

Algebra Level 5

Let a a and b b be real numbers such that the equation x 3 a x 2 + b x a = 0 x^3-ax^2+bx-a=0 has three positive real roots. Find the minimum of 2 a 3 3 a b + 3 a b + 1 \dfrac{2a^3-3ab+3a}{b+1} to three decimal places


The answer is 15.588.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Department 8
Feb 22, 2016

x 1 + x 2 + x 3 = a > 0 , x 2 x 3 + x 3 x 1 + x 1 x 2 = b > 0 , x 1 x 2 x 3 = a > 0 a 3 = x 1 + x 2 + x 3 3 x 1 x 2 x 3 3 = a 3 a 3 3 , a 2 = ( x 1 + x 2 + x 3 ) 2 3 ( x 2 x 3 + x 3 x 1 + x 1 x 2 ) = 3 b a 2 + 3 b + 1 3 , 2 a 3 3 a b + 3 a b + 1 = 2 a a 2 + 3 b + 1 3 a 3 a 9 3 , ( 2 a 3 3 a b + 3 a b + 1 ) m i n = 9 3 . \large{x_1+x_2+x_3=a>0,x_2x_3+x_3x_1+x_1x_2=b>0,x_1x_2x_3=a>0 \\ \frac{a}{3}=\frac{x_1+x_2+x_3}{3}\ge \sqrt[3]{x_1x_2x_3}=\sqrt[3]{a} \Rightarrow a\ge 3\sqrt{3},\\ a^2=(x_1+x_2+x_3)^2\ge 3(x_2x_3+x_3x_1+x_1x_2) =3b\Rightarrow \frac{a^2+3}{b+1}\ge 3,\\ \Rightarrow \frac{2a^3-3ab+3a}{b+1}=2a\cdot \frac{a^2+3}{b+1}-3a \ge 3a \ge 9\sqrt{3},\\ \left(\frac{2a^3-3ab+3a}{b+1}\right)_{min}=9\sqrt{3}.}

Second line, where does 3 3 3 \sqrt{3} come from?

Peter Pan - 4 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...