Polynomial mania

Algebra Level 4

Given that f ( x ) = x 4 + 2 p 5 x 3 + 12 x 2 + 4 q x + r f (x)=x^{4}+\left \lfloor\frac {2p}{5} \right \rfloor x^{3}+12x^{2}+4qx+r is divisible by x 3 + 3 x 2 + 9 x + r x^{3}+3x^{2}+9x+r where p , q , r p,q ,r are positive integers with 0 < r < 7 0 <r <7 .

What is the value of p + q + r 1 3 \left \lfloor \frac {p+q+r-1}{3} \right \rfloor ?


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
May 29, 2015

Let f ( x ) = ( x α ) ( x 3 + 3 x 2 + 9 x + r ) \quad f(x) = (x-\alpha)(x^3+3x^2+9x+r)

( x α ) ( x 3 + 3 x 2 + 9 x + r ) = x 4 + 2 p 5 x 3 + 12 x 2 + 4 q x + r \Rightarrow (x-\alpha)(x^3+3x^2+9x+r) = x^4 +\left \lfloor \dfrac{2p}{5} \right \rfloor x^3 + 12x^2+4qx + r

x 4 + ( 3 α ) x 3 + ( 9 3 α ) x 2 + ( r 9 α ) x α r = x 4 + 2 p 5 x 3 + 12 x 2 + 4 q x + r x^4 + (3-\alpha) x^3 + (9-3\alpha)x^2+(r-9\alpha)x- \alpha r \\ = x^4 +\left \lfloor \dfrac{2p}{5} \right \rfloor x^3 + 12x^2+4qx + r

Equating the coefficients:

{ 2 p 5 = 3 α . . . ( 1 ) 9 3 α = 12 . . . ( 2 ) 4 q = r 9 α . . . ( 3 ) r = α r . . . ( 4 ) \begin{cases} \left \lfloor \dfrac{2p}{5} \right \rfloor = 3 - \alpha &...(1) \\ 9-3\alpha = 12 &...(2) \\ 4q = r-9\alpha &...(3) \\ r = - \alpha r &...(4) \end{cases}

From Eq.2 \text{ Eq.2 } and Eq.4 \text{ Eq.4 } : α = 1 \quad \Rightarrow \alpha = -1

From Eq.2 \text{ Eq.2 } : 2 p 5 = 4 10 p 12 \quad \left \lfloor \dfrac{2p}{5} \right \rfloor = 4 \quad \Rightarrow 10 \le p \le 12

From Eq.3 \text{ Eq.3 } :

q = r + 9 4 0 + 9 4 < q < 7 + 9 4 3 q < 4 q = 3 q = \dfrac{r+9}{4} \quad \Rightarrow \dfrac{0+9}{4} < q < \dfrac{7+9}{4} \quad \Rightarrow 3 \le q < 4 \quad \Rightarrow q = 3

From Eq.3 \text{ Eq.3 } : r = 4 q 9 = 3 \quad r = 4q-9 = 3

Therefore,

p + q + r 1 3 = p + 5 3 15 3 p + q + r 1 3 17 3 p + q + r 1 3 = 5 \left \lfloor \dfrac {p+q+r-1}{3} \right \rfloor = \left \lfloor \dfrac {p +5}{3} \right \rfloor \quad \Rightarrow \left \lfloor \dfrac {15}{3} \right \rfloor \le \left \lfloor \dfrac {p+q+r-1}{3} \right \rfloor \le \left \lfloor \dfrac {17}{3} \right \rfloor \\ \Rightarrow \left \lfloor \dfrac {p+q+r-1}{3} \right \rfloor = \boxed{5}

Moderator note:

For the last line, it's much clearer to say that

15 p + q + r 1 17 15 \leq p+q+r - 1 \leq 17 , and so p + q + r 1 3 = 5 \lfloor \frac{ p+q + r - 1 } { 3} \rfloor = 5 .

While I can read your mind with regards to the claim that " p = 11 ± 1 p = 11 \pm 1 ", it would likely confuse others.

You are right.

Chew-Seong Cheong - 6 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...