Polynomial Recursion

Algebra Level 5

A sequence of polynomials f k ( x ) f_k(x) is defined as follows. f 0 ( x ) = 1 ; f k + 1 ( x ) = f k ( x + 1 ) + x k + 1 , k = 0 , 1 , 2 , . . . f_0(x)=1;\ f_{k+1}(x)=f_k(x+1)+x^{k+1}, \ k=0,1,2,... Find the last 3 digits of the coefficient of x x in f 10 ( x ) f_{10}(x) .


The answer is 433.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

12 solutions

S S
May 20, 2014

From the definition, we have f 10 ( x ) = f 9 ( x + 1 ) + x 10 f_{10}(x) = f_9(x+1)+x^{10}

But f 9 ( x + 1 ) = f 8 ( x + 2 ) + ( x + 1 ) 9 f_9(x+1) = f_8(x+2)+(x+1)^9 so f 10 ( x ) = f 8 ( x + 2 ) + ( x + 1 ) 9 + x 10 f_{10}(x) = f_8(x+2)+(x+1)^9+x^{10} and f 8 ( x + 2 ) = f 7 ( x + 3 ) + ( x + 2 ) 8 f_8(x+2)=f_7(x+3)+(x+2)^8 so f 10 ( x ) = f 7 ( x + 3 ) + ( x + 2 ) 8 + ( x + 1 ) 9 + x 10 f_{10}(x) = f_7(x+3)+(x+2)^8+(x+1)^9+x^{10} .

Continuing in this pattern, we reach f 10 ( x ) = f 0 ( x + 10 ) + ( x + 9 ) 1 + ( x + 8 ) 2 + + ( x + 1 ) 9 + x 10 f_{10}(x) = f_0(x+10)+(x+9)^1+(x+8)^2+\ldots+(x+1)^9+x^{10}

We are looking for the coefficient of x, which is the sum of the coefficients of x in the individual terms. Using the binomial theorem, we have the coefficient of x in ( x + 9 ) 1 (x+9)^1 as ( 1 1 ) 9 0 {1 \choose 1}9^0 , the coefficient of x in ( x + 8 ) 2 (x+8)^2 as ( 2 1 ) 8 1 {2 \choose 1}8^1 , that in ( x + 7 ) 3 (x+7)^3 as ( 3 1 ) 7 2 {3 \choose 1}7^2 and in general, the coefficient of x in ( x + a ) 10 a (x+a)^{10-a} as ( 10 a 1 ) a 9 a = ( 10 a ) a 9 a {{10-a} \choose 1}a^{9-a}=(10-a)a^{9-a} .

Therefore, our expression for the coefficient of x in the sum is 1 × 9 0 + 2 × 8 1 + 3 × 7 2 + + 8 × 2 7 + 9 × 1 8 1\times 9^0+2\times 8^1+3\times 7^2+\ldots+8\times2^7+9\times 1^8

We must take the the last 3 digits in the sum, which can be done by taking the last 3 digits in the individual terms, so our sum becomes 1 + 16 + 147 + 864 + 125 + 144 + 103 + 24 + 9 = 1433 1+16+147+864+125+144+103+24+9=1433

The last 3 digits of that is 433 \boxed{433} , our answer.

Nathan Soedjak
May 20, 2014

I claim that for every positive integer n n ,

f n ( x ) = i = 0 n ( x + i ) n i \begin{aligned} f_n(x)&=&\sum_{i=0}^n(x+i)^{n-i}\\ \end{aligned}

We will prove this by induction.

The base case n = 0 n=0 trivially holds, so let us now assume that f n ( x ) = i = 0 n ( x + i ) n i f_n(x)=\sum_{i=0}^n(x+i)^{n-i} holds for some n n . Replacing x x with x + 1 x+1 gives f n ( x + 1 ) = i = 0 n ( x + 1 + i ) n i f_n(x+1)=\sum_{i=0}^n(x+1+i)^{n-i} . Then f n + 1 ( x ) = f n ( x + 1 ) + x n + 1 = x n + 1 + i = 0 n ( x + 1 + i ) n i = i = 0 n + 1 ( x + i ) n + 1 i , \begin{aligned} f_{n+1}(x)&=&f_{n}(x+1)+x^{n+1}\\ &=&x^{n+1}+\sum_{i=0}^n(x+1+i)^{n-i}\\ &=&\sum_{i=0}^{n+1}(x+i)^{n+1-i}, \end{aligned} and our induction is complete.

Thus for the case of n = 10 n=10 , we have f 10 ( x ) = x 10 + ( x + 1 ) 9 + ( x + 2 ) 8 + ( x + 3 ) 7 + + ( x + 9 ) + 1 f_{10}(x)=x^{10}+(x+1)^9+(x+2)^8+(x+3)^7+\cdots+(x+9)+1 By the Binomial Theorem, the coefficient of x x is 1 8 9 + 2 7 8 + 3 6 7 + + 9 1 1 + 1 = 16433 1^8\cdot 9+2^7\cdot 8+3^6\cdot 7+\cdots+9^1\cdot 1+1=16433 The requested answer is 433 \boxed{433} .

Caetano Carezzato
May 20, 2014

In order to find the coefficient of x we need to iterate the formula until we obtain a plain formula: f 10 ( x ) = f 9 ( x + 1 ) + x 10 = f 8 ( x + 2 ) + ( x + 1 ) 9 + x 10 f_{10}(x) = f_{9}(x + 1) + x^{10} = f_{8}(x+2) + (x+1)^9 + x^{10} = f 7 ( x + 3 ) + ( x + 2 ) 8 + ( x + 1 ) 9 + x 10 = f_{7}(x+3) + (x+2)^8 + (x+1)^9 + x^{10} = f 6 ( x + 4 ) + ( x + 3 ) 7 + ( x + 2 ) 8 + ( x + 1 ) 9 + x 10 = f_{6}(x+4) + (x+3)^7 + (x+2)^8 + (x+1)^9 + x^{10}

. . . ...

= f 0 ( x + 10 ) + ( x + 9 ) 1 + ( x + 8 ) 2 + ( x + 7 ) 3 + ( x + 6 ) 4 + ( x + 5 ) 5 + ( x + 4 ) 6 + ( x + 3 ) 7 + ( x + 2 ) 8 + ( x + 1 ) 9 + x 10 = f_{0}(x+10) + (x+9)^1 + (x+8)^2 + (x+7)^3 + (x+6)^4 + (x+5)^5 + (x+4)^6 + (x+3)^7 + (x+2)^8 + (x+1)^9 + x^{10} = 1 + ( x + 9 ) 1 + ( x + 8 ) 2 + ( x + 7 ) 3 + ( x + 6 ) 4 + ( x + 5 ) 5 + ( x + 4 ) 6 + ( x + 3 ) 7 + ( x + 2 ) 8 + ( x + 1 ) 9 + x 10 = 1 + (x+9)^1 + (x+8)^2 + (x+7)^3 + (x+6)^4 + (x+5)^5 + (x+4)^6 + (x+3)^7 + (x+2)^8 + (x+1)^9 + x^{10}

Now we perform the calculation of each term, just worrying about the x coefficient. For instance ( x + 9 ) 1 (x + 9)^1 has x coefficient 1. And ( x + 8 ) 2 = x 2 + 2 × 8 1 × x + 64 (x+8)^2 = x^2 + 2\times 8^1\times x +64 has x coefficient 2 × 8 1 × x 2\times 8^1\times x

Continuing all the calculations, we get:

1 × x + 2 × 8 1 × x + 3 × 7 2 × x + 4 × 6 3 × x + 5 × 5 4 × x + 6 × 4 5 × x + 7 × 3 6 × x + 8 × 2 7 × x + 9 × 1 8 × x 1\times x + 2\times 8^1\times x + 3\times 7^2\times x + 4\times 6^3\times x + 5\times 5^4\times x + 6\times 4^5\times x + 7\times 3^6\times x + 8\times 2^7\times x + 9\times 1^8\times x

This results in 16433 × x 16433 \times x . This is the x coefficient we are looking for and the last 3 digits are 433 433 .

Chang Yoon Lee
May 20, 2014

It can be easily observed by expansion that f n ( x ) = k = 0 n ( x + n k ) k f_n (x) = \displaystyle \sum_{k=0}^n (x+n-k)^k

In specific, f 10 ( x ) = k = 0 10 ( x + 10 k ) k f_{10} (x) = \displaystyle \sum_{k=0}^{10} (x+10-k)^k

By binomial expansion, the coefficient of x is k = 2 9 k ( 10 k ) k 1 \displaystyle \sum_{k=2}^9 k(10-k)^{k-1} , of which the last three digits are 433.

Sed Holaysan
May 20, 2014

f 0(x) = 1 f 1(x) = 1 + x f 2(x) = 1 + (x+1) + x^2 f 3(x) = 1 + (x+2) + (x+1)^2 + x^3 f 4(x) = 1 + (x+3) + (x+2)^2 + (x+1)^3 + x^4 ... Continuing the pattern would show that: f 10(x) = 1 + (x+9) + (x+8)^2 + (x+7)^3 + ... + (x+2)^8 + (x+1)^9 + x^10 Using the Binomial Theorem, the coefficients of x for each expansion can be obtained. The coefficient of x in (x+9) is 1. The coefficient of x in (x+8)^2 is ( 2C 1)(8). The coefficient of x in (x+7)^3 is ( 3C 2)(7^2). The coefficient of x in (x+6)^4 is ( 4C 3)(6^3). The total sum can then be expressed as: \displaystyle \sum_{i=1}^9 (10-i)(i^(9-i)). Solving this expression gives the total of 16433. Therefore, the last 3 digits of the coefficient of x are 433.

Stefano Scx
May 20, 2014

We have f 0 ( x ) = 1 f_0(x)=1 , f 1 ( x ) = x + 1 f_1(x)=x+1 , f 2 ( x ) = x 2 + ( x + 1 ) + 1 f_2(x)=x^2+(x+1)+1 , f 3 ( x ) = x 3 + ( x + 1 ) 2 + ( x + 2 ) 1 + 1 f_3(x)=x^3+(x+1)^2+(x+2)^1+1 .... continuing so we have that f 10 ( x ) = x 10 + ( x + 1 ) 9 + ( x + 2 ) 8 + ( x + 3 ) 7 + ( x + 4 ) 6 + . . . . . . + ( x + 8 ) 2 + ( x + 9 ) 1 + 1 f_{10}(x)=x^{10}+(x+1)^9+(x+2)^8+(x+3)^7+ (x+4)^6 +... \\ ...+(x+8)^2+(x+9)^1+1 .

Each term has the form ( x + k ) 10 k , k = 0 , 1 , 2 , . . . , 10 (x+k)^{10-k} , \ k=0,1,2,...,10 . The coefficient of x x in each term is given by ( 10 k ) k 10 k 1 (10-k)k^{10-k-1} due to the binomial teorem. The coefficient of x x in f 10 ( x ) f_{10}(x) is given by the sum of the coefficient of each term. So it is given by: 9 1 8 + 8 2 7 + 7 3 6 + 6 4 5 + 5 5 4 + 4 6 3 + 3 7 2 + 2 8 1 + 1 9\cdot 1^8+ 8\cdot 2^7+7\cdot 3^6 + 6\cdot 4^5+5\cdot 5^4+ 4\cdot 6^3+3\cdot 7^2+2\cdot 8^1+1 . This is equal to 16433 16433 , so the last 3 3 digits are 433 433 .

Caj Cajurao
May 20, 2014

note that:

f 0(x)=1 f 1(x)=1 + x f 2(x)=1 + (x+1) + (x)^2 f 3(x)=1 + (x+2) + (x+1)^2 + x^3 . . . . f_{10}(x)= 1 + (x+9) + (x+8)^2 + (x+7)^3 + (x+6)^4 + (x+5)^5 + (x+4)^6 +(x+3)^7 + (x+2)^8 + (x+1)^9 +x^{10}

and using the binomial theorem, we get the following coefficients of x of the the powers of (x+k), k=1,2,..10.

(x+9) =1 (x+8)^2=16 (x+7)^3=147 (x+6)^4=864 (x+5)^5=3125 (x+4)^6=6144 (x+3)^7=5103 (x+2)^8=1024 (x+1)^9=9 x^{10}=0

which is when you add, you will get 16433.

Harshit Sharma
May 20, 2014

f 10 ( x ) = f 9 ( x + 1 ) + x 10 f_{10}(x) = f_9(x+1) + x^{10} and f 9 ( x + 1 ) = f 8 ( x + 2 ) + ( x + 1 ) 9 f_9(x+1) = f_8(x+2) + (x+1)^9 and so on for f 8 ( x + 2 ) f_8(x+2) till f 1 ( x + 9 ) f_1(x+9) and f 0 ( x + 10 ) = 1 f_0(x+10) = 1

therefore f 10 ( x ) = x 10 + ( x + 1 ) 9 + ( x + 2 ) 8 + ( x + 3 ) 7 + ( x + 4 ) 6 f_{10}(x) = x^{10} + (x+1)^9 + (x+2)^8 + (x+3)^7 +(x+4)^6 + ( x + 5 ) 5 + ( x + 6 ) 4 + ( x + 7 ) 3 + ( x + 8 ) 2 + ( x + 9 ) 1 +(x+5)^5+(x+6)^4+(x+7)^3+(x+8)^2+(x+9)^1 and sum coefficient of x in all the above terms will be:- 9 c 1 1 + 8 c 1 2 7 + 7 c 1 3 6 + 6 c 1 4 5 + 5 c 1 5 5 + 4 c 1 6 3 + 3 c 1 7 2 + 2 c 1 8 1 + 1 9c1*1 + 8c1*2^7 + 7c1*3^6 + 6c1*4^5 + 5c1*5^5 + 4c1*6^3 + 3c1*7^2 + 2c1*8^1 + 1 = 9 + 1024 + 5103 + 6144 + 3125 + 864 + 147 + 16 + 1 = 9 + 1024 + 5103 + 6144 + 3125 + 864 + 147 + 16 +1 = 16433 = 16433 therefore the last 3 digits of the coefficient of x x in f 10 ( x ) f_{10}(x) is 433 433 .

Ahmad Widardi
May 20, 2014

Just see the recursion... We get f10(x) = f9(x+1)+x^10=f8(x+2)+(x+1)^9+x^10=f7(x+3)+(x+2)^8+(x+1)^9+x^10=......(continue by yourself)=Ʃ(x+k)^(10-k) Using the binomial newton theorem, we can see Coefficient of x in (x+k)^(10-k) is (10-k) (k^(9-k)) So, we just find the value of \displaystyle \sum_{i=1}^3 (10-k) (k^(9-k)) And just a little work to count them we get 16433... And the last 3 digits of the coefficient of x is 433...

Owen Scott
May 20, 2014

Keep rewriting f10, f9, f8, ..., until you reach f0. f10(x) = f9(x+1) + x^10 f9(x+1) = f8(x+2) + (x+1)^9 f8(x+2) = f7(x+3) + (x+2)^8 f7(x+3) = f6(x+4) + (x+3)^7 ... f3(x+7) = f2(x+8) + (x+7)^3 f2(x+8) = f1(x+9) + (x+8)^2 f1(x+9) = f0(x+10) + (x+9)^1 f0(x+10) = f0(x) = 1

Now, work your way back up and you'll get. f10(x) = x^10 + (x+1)^9 + (x+2)^8 + (x+3)^7 + ... + (x+8)^2 + (x+9)^1 +1 X coeff= 0 + 9 1^8 + 8 2^7 + 7 3^6 + 6 4^5 + ... + 2 8^1 + 1 9^0 X coeff= 16433

If you were confused by the above step, here is an example with calculating the coefficient of x in the (x+3)^7 term. (x+3)^7 = (x+3)(x+3)(x+3)(x+3)(x+3)(x+3)(x+3) In 6 of those terms, we need to multiply by a 3. In 1 of those terms, we need to multiply by a 1x. There are 7C1 ways to pick which factor gives the x. 7C1 * 3^6 * 1 = 5103

Calvin Lin Staff
May 13, 2014

Define g k ( x ) g_k(x) to be the derivative of f k ( x ) f_k(x) . Then g 0 ( x ) = 0 g_0(x)=0 and, differentiating the functional equation for f k + 1 , f_{k+1}, g k + 1 ( x ) = g k ( x + 1 ) + ( k + 1 ) x k g_{k+1}(x)=g_k(x+1)+(k+1)x^k

Note that the coefficient we are looking for is g 10 ( 0 ) g_{10}(0) . Applying the recursive formula for g 10 , g 9 g_{10},\ g_9 and so on, we get: g 10 ( 0 ) = g 9 ( 1 ) + 10 0 9 = g 8 ( 2 ) + 9 1 8 + 10 0 9 = g 7 ( 3 ) + 8 2 7 + 9 1 8 + 10 0 9 = g_{10}(0)=g_9(1)+10\cdot 0^9=g_8(2)+9\cdot 1^8+10\cdot 0^9=g_7(3)+ 8\cdot 2^7+ 9\cdot 1^8+10\cdot 0^9= = . . . = g 0 ( 10 ) + ( 1 9 0 + 2 8 1 + . . . + 9 1 8 + 10 0 9 ) =...=g_0(10)+\left(1\cdot 9^0+2\cdot 8^1 +...+ 9\cdot 1^8+10\cdot 0^9\right) Because g 0 ( 10 ) = 0 , g_0(10)=0, we just need to calculate the last three digits of the sum 1 9 0 + 2 8 1 + . . . + 9 1 8 + 10 0 9 1\cdot 9^0+2\cdot 8^1 +...+ 9\cdot 1^8+10\cdot 0^9 . This sum is 1 + 16 + 3 49 + 4 6 3 + 5 5 4 + 6 4 5 + 7 3 6 + 8 2 7 + 9 + 0 = 1+16+3\cdot 49+4\cdot 6^3+5\cdot 5^4+ 6\cdot 4^5+7\cdot 3^6+ 8\cdot 2^7+9+0= = 1 + 16 + 147 + 864 + 3125 + 6144 + 5103 + 1024 + 9 = 16433 =1+16+147+864+3125+6144+5103+1024+9=16433 So the answer is 433 433 .

What is polynomial Recursion?

Jaykant Shikre - 6 years, 7 months ago

First observe that the coefficient of x x in f 10 ( x ) f_{10}(x) is equal to f 9 ( 1 ) f_{9}'(1) . In fact if P ( x ) = a n x n + a 1 x + a 0 P(x)=a_nx^n+\cdots a_1x+a_0 then P ( x + 1 ) = a n ( x + 1 ) n + + a 1 ( x + 1 ) + a 0 = P(x+1)=a_n(x+1)^n+\cdots +a_1(x+1)+a_0= a n x n + + ( ( n n 1 ) a n + ( n 1 n 2 ) a n 1 + + a 1 ) x + ( a 0 + a 1 + + a n ) = a_nx^n+\cdots +({n\choose n-1}a_n+{n-1\choose n-2}a_{n-1}+\cdots +a_1)x+(a_0+a_1+\cdots +a_n)= a n x n + + ( n a n + ( n 1 ) a n 1 + + a 1 ) x + ( a 0 + a 1 + + a n ) = a_nx^n+\cdots +(na_n+(n-1)a_{n-1}+\cdots +a_1)x+(a_0+a_1+\cdots +a_n)= and P ( x ) = a n n x n + a n 1 ( n 1 ) x n 1 + + a 1 P'(x)=a_nnx^n+a_{n-1}(n-1)x^{n-1}+\cdots +a_1\implies P ( 1 ) = n a n + ( n 1 ) a n 1 + + a 1 P'(1)=na_n+(n-1)a_{n-1}+\cdots +a_1 . Now with this observation we just need to apply the derivative in the recurrence relation, use it with f 9 ( 1 ) f_{9}'(1) and complete taking ( m o d 1000 ) \pmod{1000} f k + 1 ( x ) = f k ( x + 1 ) + x k + 1 f_{k+1}(x)=f_{k}(x+1)+x^{k+1} f k + 1 ( x ) = f k ( x + 1 ) + ( k + 1 ) x k f_{k+1}'(x)=f_{k}'(x+1)+(k+1)x^{k}\implies f 9 ( 1 ) = f 8 ( 2 ) + 9 1 8 = f_{9}'(1)=f_{8}'(2)+9\cdot 1^{8}= f 7 ( 3 ) + 9 1 8 + 8 2 7 = f_{7}'(3)+9\cdot 1^8+8\cdot 2^7=\cdots = k = 1 9 k 9 k ( 10 k ) =\displaystyle\sum_{k=1}^{9}k^{9-k}(10-k)\equiv 433 ( m o d 1000 ) 433\pmod{1000}

The easy to calculate the constant term of a polynomial, is to take the derivative and then evaluate at 0.

Calvin Lin Staff - 7 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...