Polynomial Root Manipulation

Algebra Level 5

Let x 1 , x 2 , x_1,x_2, and x 3 x_3 be roots of x 3 9 x 2 + 11 x 1 = 0. x^3-9x^2+11x-1=0. If y = x 1 + x 2 + x 3 , y=\sqrt{x_1}+\sqrt{x_2}+\sqrt{x_3}, find the value of y 4 18 y 2 8 y \displaystyle |y^4-18y^2-8y|


The answer is 37.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ravi Dwivedi
Aug 1, 2015

Since x 1 , x 2 , x 3 x_1, x_2,x_3 are the roots of given equation

By vieta's relations it follows that

x 1 + x 2 + x 3 = 9 x_1+x_2+x_3=9

x 1 x 2 + x 2 x 3 + x 3 x 1 = 11 x_1x_2+x_2x_3+x_3x_1=11

x 1 x 2 x 3 = 1 x_1x_2x_3=1

Now given y = x 1 + x 2 + x 3 y= \sqrt{x_1}+ \sqrt{x_2}+ \sqrt{x_3}

Squaring both sides we obtain

y 2 = x 1 + x 2 + x 3 + 2 ( x 1 x 2 + x 2 x 3 + x 3 x 1 ) y^2=x_1+x_2+x_3+2(\sqrt{x_1x_2}+\sqrt{x_2x_3}+\sqrt{x_3x_1})

y 2 = 9 + 2 ( 1 x 3 + 1 x 1 + 1 x 2 ) \large y^2=9+2(\frac{1}{\sqrt{x_3}}+\frac{1}{\sqrt{x_1}}+\frac{1}{\sqrt{x_2}})

(Using vieta's relations above)

( y 2 9 ) 2 = 4 ( 1 x 1 + 1 x 2 + 1 x 3 ) + 2 ( 1 x 1 x 2 + 1 x 2 x 3 + 1 x 3 x 1 ) ) \large (y^2-9)^2=4(\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3})+2(\frac{1}{\sqrt{x_1x_2}}+\frac{1}{\sqrt{x_2x_3}}+\frac{1}{\sqrt{x_3x_1}}))

y 4 18 y 2 + 81 = 4 ( x 1 x 2 + x 2 x 3 + x 3 x 1 x 1 x 2 x 3 + 2 ( x 1 + x 2 + x 3 ) ) y^4-18y^2+81=4(\frac{x_1x_2+x_2x_3+x_3x_1}{x_1x_2x_3}+2(\sqrt{x_1}+\sqrt{x_2}+\sqrt{x_3}))

y 4 18 y 2 + 81 = 4 ( 11 1 + 2 y ) y^4-18y^2+81=4(\frac{11}{1}+2y)

y 4 18 y 2 8 y = 44 81 = 37 y^4-18y^2-8y=44-81=-37

So y 4 18 y 2 8 y = 37 |y^4-18y^2-8y|=\boxed{37}

Moderator note:

Given that the answer is so nice, is there a more intuitive explanation for why this works out, other than random chance?

amazing :D !!!

Romeo Gomez - 5 years, 10 months ago

my solution is something like yours but you made it very easy. Great sir

Dev Sharma - 5 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...