Factorize x 3 − 4 x 2 − 1 1 x + 3 0 .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
that was easy
f ( x ) = x 3 − 4 x 2 − 1 1 x + 3 0 = x 3 − 2 x 2 − 2 x 2 + 4 x − 1 5 x + 3 0 = x 2 ( x − 2 ) − 2 x ( x − 2 ) − 1 5 ( x − 2 ) = ( x − 2 ) ( x 2 − 2 x − 1 5 ) = ( x − 2 ) ( x 2 − 5 x + 3 x − 1 5 ) = ( x − 2 ) { x ( x − 5 ) + 3 ( x − 5 ) } = ( x − 2 ) ( x − 5 ) ( x + 3 ) .
Note: ( x − 2 ) is a factor of f ( x ) because if x = 2 , then f ( x ) = 0 .
Relevant wiki: Rational Root Theorem - Basic
Using rational root theorem x 3 − 4 x 2 − 1 1 x + 3 0 = ( x − 2 ) ( x 2 − 2 x − 1 5 ) = ( x − 2 ) ( x + 3 ) ( x − 5 ) .
Problem Loading...
Note Loading...
Set Loading...
**Plugging in values for x gives us 2 has root because 2 3 − 4 ( 2 2 ) − 1 1 ( 2 ) + 3 0 = 0 . We divide x 3 − 4 x 2 − 1 1 x + 3 0 by x − 2 to get x 2 − 2 x − 1 5 . Factoring that we have ( x − 3 ) ( x − 5 ) . So x 3 − 4 x 2 − 1 1 x + 3 0 = ( x − 3 ) ( x − 5 ) ( x − 2 ) . - Source (Aops)