Polynomial Roots - 2

Algebra Level 4

It is known that p , q p, q and r r are positive real roots of x 3 11 x 2 + 13 x 4 = 0 x^3-11x^2+13x-4=0 . If k = p + q + r k=\sqrt{p}+\sqrt{q}+\sqrt{r} , find the numerical value of the expression

k 4 22 k 2 16 k + 1001 k^4-22k^2-16k+1001


The answer is 932.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Apr 25, 2020

By Vieta's formula , we have { p + q + r = 11 p q + q r + r p = 13 p q r = 4 \begin{cases} p+q+r = 11 \\ pq+qr+rp = 13 \\ pqr = 4 \end{cases}

Given that k = p + q + r k = \sqrt p + \sqrt q + \sqrt r , then

k 2 = p + q + r + 2 ( p q + q r + r p ) = 11 + 2 ( p q + q r + r p ) 2 ( p q + q r + r p ) = k 11 \begin{aligned} k^2 & = \red{p+q+r} + 2(\sqrt{pq} + \sqrt{qr} + \sqrt{rp}) = \red{11} + 2(\sqrt{pq} + \sqrt{qr} + \sqrt{rp}) & \small \blue{\implies 2(\sqrt{pq} + \sqrt{qr} + \sqrt{rp}) = k-11} \end{aligned}

k 4 = 121 + 44 ( p q + q r + r p ) + 4 ( p q + q r + r p + 2 ( p p q r + q p q r + r p q r ) ) Note p q r = 4 = 121 + 44 ( p q + q r + r p ) + 4 ( 13 + 4 ( p + q + r ) ) = 173 + 22 ( k 2 11 ) + 16 k = 22 k 2 + 16 k 69 \begin{aligned} k^4 & = 121 + 44\left(\sqrt{pq} + \sqrt{qr} + \sqrt{rp}\right) + 4\left(\red{pq+qr+rp} + 2(\sqrt p \cdot \sqrt{\blue{pqr}} + \sqrt q \cdot \sqrt{\blue{pqr}} + \sqrt r \cdot \sqrt{\blue{pqr}})\right) & \small \blue{\text{Note }pqr = 4} \\ & = 121 + 44\left(\blue{\sqrt{pq} + \sqrt{qr} + \sqrt{rp}}\right) + 4\left(\red{13} + 4(\blue{\sqrt p + \sqrt q + \sqrt r}) \right) \\ & = 173 + 22\left(\blue{k^2 - 11} \right) + 16\blue k \\ & = 22k^2 + 16k - 69 \end{aligned}

Therefore,

k 4 22 k 2 16 k + 69 = 0 k 4 22 k 2 16 k + 1001 = 932 \begin{aligned} \implies k^4 - 22k^2 - 16k + 69 & = 0 \\ k^4 - 22k^2 - 16k + 1001 & = \boxed{932} \end{aligned}

there is a misprint at the end of the line that starts with k^2=////

arik heilig - 1 year, 1 month ago

Log in to reply

You mean 2 ( p q + \small \blue{\implies 2(\sqrt{pq}+ \cdots} . That is intended.

Chew-Seong Cheong - 1 year, 1 month ago

From the given equation we can write p + q + r = 11 , p q + q r + r p = 13 , p q r = 4 p+q+r=11, pq+qr+rp=13, pqr=4 . Now, from the expression for k k , we get k 2 = p + q + r + 2 ( p q + q r + r p ) = 11 + 2 ( p q + q r + r p ( k 2 11 ) 2 = 4 ( p q + q r + r p ) 2 = 4 ( p q + q r + r p + 2 ( p q 2 r + p q r 2 + p 2 q r ) ) = 4 ( 13 + 4 ( p + q + r ) ) = 52 + 16 k k 4 22 k 2 + 121 16 k = 52 k 4 22 k 2 16 k + 1001 = 52 121 + 1001 = 932 k^2=p+q+r+2(\sqrt {pq}+\sqrt {qr}+\sqrt {rp})=11+2(\sqrt {pq}+\sqrt {qr}+\sqrt {rp}\implies (k^2-11)^2=4(\sqrt {pq}+\sqrt {qr}+\sqrt {rp})^2=4\left (pq+qr+rp+2(\sqrt {pq^2r}+\sqrt {pqr^2}+\sqrt {p^2qr})\right ) =4\left (13+4(\sqrt p+\sqrt q+\sqrt r) \right ) =52+16k\implies k^4-22k^2+121-16k=52\implies k^4-22k^2-16k+1001=52-121+1001=\boxed {932} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...