Polynomial Scramble # 1

Algebra Level 3

( a 8 + a 4 + 1 ) ( a 3 + a 2 + a + 1 ) a 9 + a 6 + a 3 + 1 = 21 \large \frac{(a^8 + a^4 + 1)(a^3 + a^2 + a + 1)}{a^9 + a^6 + a^3 + 1}= 21

Find all real values of a a satisfying the equation above.

Source: Art of Problem Solving

9 , 0 , 5 , 4 9,0,-5,4 0 , 1 , 2 0,1,2 5 , 4 -5,4 6 , 7 -6,7 9 , 8 , 7 9,8,7 8 , 6 8,6 18 , 19 18,19 0 , 0 0,0

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Arjun Shrivastava
Jul 20, 2018

** It does not look like we are going to divide that mess so we use Geometric series : \color[rgb]{0.35,0.35,0.35} \dfrac{(a^8 + a^4 + 1)(a^3 + a^2 + a + 1)}{a^9 + a^6 + a^3 + 1} = 21. = a 12 1 a 4 1 a 4 1 a 1 / ( a 12 1 ) ( a 3 1 ) \frac{a^{12} - 1}{a^4-1} \cdot \frac{a^4-1}{a-1}/(a^{12}-1)(a^3-1) = a 12 1 a 1 a 3 1 a 12 1 = \frac{a^{12}-1}{a-1} \cdot \frac{a^3-1}{a^{12}-1} = a 3 1 a 1 = a 2 + a + 1 = \frac{a^3-1}{a-1} = a^2 + a + 1 . So a 2 + a + 1 = 21 a^2 + a + 1 = 21 a 2 + a 20 a^2 + a - 20 . a = 5 , a = 4 a = -5 , a = 4

Chew-Seong Cheong
Jul 21, 2018

Relevant wiki: Rational Root Theorem - Basic

( a 8 + a 4 + 1 ) ( a 3 + a 2 + a + 1 ) a 9 + a 6 + a 3 + 1 = 21 ( a 8 + a 4 + 1 ) ( a 1 ) ( a 3 + a 2 + a + 1 ) ( a 1 ) ( a 9 + a 6 + a 3 + 1 ) = 21 ( a 8 + a 4 + 1 ) ( a 4 1 ) ( a 3 1 ) ( a 1 ) ( a 3 1 ) ( a 9 + a 6 + a 3 + 1 ) = 21 ( a 12 1 ) ( a 3 1 ) ( a 1 ) ( a 12 1 ) = 21 a 3 1 a 1 = 21 a 3 21 a + 20 = 0 By rational root theorem ( a 1 ) ( a 2 + a 20 ) = 0 ( a 1 ) ( a 4 ) ( a + 5 ) = 0 a = 5 , 4 \begin{aligned} \frac {(a^8+a^4+1)(a^3+a^2+a+1)}{a^9+a^6+a^3+1} & = 21 \\ \frac {(a^8+a^4+1){\color{#D61F06}(a-1)}(a^3+a^2+a+1)}{{\color{#D61F06}(a-1)}(a^9+a^6+a^3+1)} & = 21 \\ \frac {(a^8+a^4+1)(a^4-1)\color{#D61F06}(a^3-1)}{(a-1){\color{#D61F06}(a^3-1)}(a^9+a^6+a^3+1)} & = 21 \\ \frac {(a^{12}-1)(a^3-1)}{(a-1)(a^{12}-1)} & = 21 \\ \frac {a^3-1}{a-1} & = 21 \\ \implies a^3 - 21a + 20 & = 0 & \small \color{#3D99F6} \text{By rational root theorem} \\ (a-1)(a^2+a-20) & = 0 \\ (a-1)(a-4)(a+5) & = 0 \\ \implies a & = \boxed{-5,4} \end{aligned}

Note that when a = 1 a=1 , ( a 8 + a 4 + 1 ) ( a 3 + a 2 + a + 1 ) a 9 + a 6 + a 3 + 1 21 \dfrac {(a^8+a^4+1)(a^3+a^2+a+1)}{a^9+a^6+a^3+1} \ne 21

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...