Polynomial Sum Power of root

Algebra Level 5

x 2015 + 2 x 2014 + 3 x 2013 + + 2015 x + 2016 = 0 \large x^{2015} + 2x^{2014} + 3x^{2013} + \ldots + 2015x + 2016 = 0

Let x 1 , x 2 , , x 2015 x_1, x_2, \ldots , x_{2015} be the roots of the equation above. Find the value of the summation below.

n = 0 2014 k = 1 2015 ( x k ) n \large \sum_{n=0}^{2014} \sum_{k=1}^{2015} (x_k)^n


The answer is -2013.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

x 2015 + 2 x 2014 + 3 x 2013 + + 2015 x + 2016 = 0 ( 1 ) x^{2015}+2x^{2014}+3x^{2013}+\cdots+2015x+2016=0 \cdots\cdots (1) x 2016 + 2 x 2015 + 3 x 2014 + + 2015 x 2 + 2016 x = 0 ( 2 ) x^{2016}+2x^{2015}+3x^{2014}+\cdots +2015x^{2}+2016x=0\cdots\cdots (2) for x 0 x\ne 0 ( 2 ) ( 1 ) (2)-(1) x 2016 + x 2015 + x 2014 + + x 2016 = 0 x^{2016}+x^{2015}+x^{2014}+\cdots +x-2016=0

x 2015 + x 2014 + x 2013 + + x + 1 = 2016 x x^{2015}+x^{2014}+x^{2013}+\cdots +x+1=\frac{2016}{x} Because x k x_{k} is root of first equation for k = 1 , 2 , , 2015 k=1,2,\cdots,2015

also such that x k 2015 + x k 2014 + x k 2013 + + x k + 1 = 2016 x k x_{k}^{2015}+x_{k}^{2014}+x_{k}^{2013}+\cdots +x_{k}+1=\frac{2016}{x_{k}} or x k 2014 + x k 2013 + + x k + 1 = 2016 x k 2 1 x k x_{k}^{2014}+x_{k}^{2013}+\cdots +x_{k}+1=\frac{2016}{x_{k}^{2}}-\frac{1}{x_{k}}

So n = 0 2014 k = 1 2015 ( x k ) n \sum_{n=0}^{2014}\, \sum_{k=1}^{2015} \left ( x_{k} \right )^{n} = k = 1 2015 ( x k 2014 + x k 2013 + x k 2012 + + x k + 1 ) =\sum_{k=1}^{2015}\left ( \,x_{k}^{2014}+x_{k}^{2013}+x_{k}^{2012}+\cdots +x_{k}+1 \right ) = k = 1 2015 ( 2016 x k 2 1 x k ) = 2016 k = 1 2015 ( 1 x k 2 ) k = 1 2015 ( 1 x k ) =\sum_{k=1}^{2015} \left ( \frac{2016} {x_{k}^{2}}-\frac{1}{x_{k}} \right ) = 2016 \sum_{k=1}^{2015} \left ( \frac{1}{x_{k}^{2}} \right ) -\sum_{k=1}^{2015} \left( \frac{1}{x_{k}} \right ) = 2016 ( k = 1 2015 1 x k ) 2 4032 1 i j 2015 ( 1 x i x j ) k = 1 2015 ( 1 x k ) ( 3 ) = 2016 \left ( \sum_{k=1}^{2015} \frac{1}{x_{k}} \right )^{2} - 4032 \sum_{1\le i\ne j\le 2015} \left ( \frac{1}{x_{i}x_{j}} \right ) -\sum_{k=1}^{2015} \left( \frac{1}{x_{k}} \right ) \cdots\cdots (3)

Let y k = 1 x k y_{k}=\frac{1}{x_{k}} for k = 1 , 2 , , 2015 k=1,2,\cdots,2015

we have new equation 2016 y k 2015 + 2015 y k 2014 + 2014 y k 2013 + + 3 y k 2 + 2 y k + 1 = 0 2016y_{k}^{2015}+2015y_{k}^{2014}+2014y_{k}^{2013}+\cdots +3y_{k}^{2}+2y_{k}+1=0

so ( 3 ) = 2016 ( k = 1 2015 y k ) 2 4032 1 i j 2015 ( y i y j ) k = 1 2015 ( y k ) (3)\, =\, 2016 \left ( \sum_{k=1}^{2015} y_{k} \right )^{2} - 4032 \sum_{1\le i\ne j\le 2015} \left ( y_{i}y_{j} \right ) -\sum_{k=1}^{2015} \left( y_{k} \right )

from vieta formula we conclude the final answer is 2016 ( 2015 2016 ) 2 4032 ( 2014 2016 ) ( 2015 2016 ) 2016 \left ( \frac{-2015}{2016} \right )^{2} - 4032 \left ( \frac{2014}{2016} \right ) - \left( \frac{-2015}{2016} \right ) = 201 5 2 2.2014.2016 + 2015 2016 = 2013 = \frac{2015^{2}-2.2014.2016+2015}{2016} = \boxed{-2013}

Nice problem! =D

Pi Han Goh - 5 years, 11 months ago

Log in to reply

Thank you Friend :) Try my another problem.

uzumaki nagato tenshou uzumaki - 5 years, 11 months ago

Nice SOLUTION!

I used Newton Sum

Dev Sharma - 5 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...