Polynomial twister

Algebra Level 3

Let x 1 , x 2 , , x 2015 x_1,x_2,\ldots,x_{2015} be the roots of the equation x 2015 + x 2014 + x 2013 + + x 2 + x + 1 = 0. x^{2015} + x^{2014} + x^{2013} + \ldots + x^2 + x + 1 =0. Evaluate

1 1 x 1 + 1 1 x 2 + + 1 1 x 2015 . \frac1{1-x_1} + \frac1{1-x_2} + \ldots + \frac1{1-x_{2015}}.


The answer is 1007.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

8 solutions

Mas Mus
Jan 5, 2016

f ( x ) = x 2015 + x 2014 + x 2013 + + x 2 + x + 1 f(x)= x^{2015} + x^{2014} + x^{2013} + \ldots + x^2 + x + 1

f ( 1 ) = 1 + 1 + 1 + + 1 + 1 = 1 = 2016 f(1)=1+1+1+\ldots+1+1=1=2016

f ( x ) = 2015 x 2014 + 2014 x 2013 + 2012 x 2013 + + 2 x + 1 f'(x)=2015 x^{2014} + 2014x^{2013} +2012x^{2013}+ \ldots +2x+1

f ( 1 ) = 2015 + 2014 + 2013 + + 2 + 1 = 2015 2 × ( 1 + 2015 ) = 2015 × 2016 2 f'(1)=2015+2014+2013+\ldots+2+1=\frac{2015}{2}\times{(1+2015)}=\frac{2015\times{2016}}{2}

We have other form of f ( x ) f(x)

f ( x ) = ( x x 1 ) ( x x 2 ) ( x x 2015 ) f(x)=(x-x_1)(x-x_2)\ldots(x-x_{2015})

log f ( x ) = log ( x x 1 ) ( x x 2 ) ( x x 2015 ) \log{f(x)}=\log{(x-x_1)(x-x_2)\ldots(x-x_{2015})}

f ( x ) f ( x ) = 1 x x 1 + 1 x x 2 + + 1 x x 2015 \large{\frac{f'(x)}{f(x)}=\frac{1}{x-x_1}+\frac{1}{x-x_2}+\ldots+\frac{1}{x-x_{2015}}}

f ( 1 ) f ( 1 ) = 1 1 x 1 + 1 1 x 2 + + 1 1 x 2015 \large{\frac{f'(1)}{f(1)}=\frac{1}{1-x_1}+\frac{1}{1-x_2}+\ldots+\frac{1}{1-x_{2015}}}

2015 × 2016 2 2016 = 1 1 x 1 + 1 1 x 2 + + 1 1 x 2015 \large{\frac{\frac{2015\times{2016}}{2}}{2016}=\frac{1}{1-x_1}+\frac{1}{1-x_2}+\ldots+\frac{1}{1-x_{2015}}}

1 1 x 1 + 1 1 x 2 + + 1 1 x 2015 = 1007.5 \frac{1}{1-x_1}+\frac{1}{1-x_2}+\ldots+\frac{1}{1-x_{2015}}=\boxed{1007.5}

Ravi Dwivedi
Jul 9, 2015

We will find a polynomial with roots

Since is a root of

Moderator note:

There's a much simpler approach to this.

Hint : Consider the reciprocal of the roots of the given equation first. Alternatively, apply roots of unity.

And of course, can you generalize this?

Yes we can generalize this. Replace 2015 by n and the answer will be n/2.

Ravi Dwivedi - 5 years, 11 months ago

I think this I solved this in an easier way.

Since this is a monic polynomial, we can say that

f ( x ) = x 2015 + x 2014 + + x 2 + x + 1 = ( x x 1 ) ( x x 2 ) ( x x 2015 ) f(x) = x^{2015} + x^{2014} + \ldots + x^2 + x +1 = (x - x_1)(x-x_2)\ldots(x-x_{2015})

f ( 1 ) = i = 1 2015 ( x x i ) = 2016 f(1) = \displaystyle \prod_{i=1}^{2015} (x-x_i) = 2016

f ( x ) = 1. ( x x 2 ) . ( x x 3 ) ( x x 2015 ) + ( x x 1 ) . 1. ( x x 3 ) ( x x 2015 ) + + ( x x 1 ) . ( x x 2 ) ( x x 2014 ) . 1 \Rightarrow f'(x) = 1.(x-x_2).(x-x_3)\ldots(x-x_{2015}) + (x-x_1).1.(x-x_3)\ldots(x-x_{2015}) + \ldots + (x-x_1).(x-x_2)\ldots(x-x_{2014}).1

The above step was achieved by product rule .

f ( x ) = 2015 x 2014 + 2014 x 2013 + + 2 x + 1 f'(x) = 2015x^{2014} + 2014x^{2013} + \ldots + 2x + 1

f ( 1 ) = j = 1 2015 j = ( 1 x 2 ) . ( 1 x 3 ) ( 1 x 2015 ) + ( 1 x 1 ) . ( 1 x 3 ) ( 1 x 2015 ) + + ( 1 x 1 ) . ( 1 x 2 ) ( 1 x 2014 ) \Rightarrow f'(1) = \displaystyle \sum_{j=1}^{2015} j= (1-x_2).(1-x_3)\ldots(1-x_{2015}) + (1-x_1).(1-x_3)\ldots(1-x_{2015}) + \ldots + (1-x_1).(1-x_2)\ldots(1-x_{2014})

The expression can be written as:

E = ( 1 x 2 ) . ( 1 x 3 ) ( 1 x 2015 ) + ( 1 x 1 ) . ( 1 x 3 ) ( 1 x 2015 ) + + ( 1 x 1 ) . ( 1 x 2 ) ( 1 x 2014 ) i = 1 2015 ( 1 x i ) E = \displaystyle \frac{(1-x_2).(1-x_3)\ldots(1-x_{2015}) + (1-x_1).(1-x_3)\ldots(1-x_{2015}) + \ldots + (1-x_1).(1-x_2)\ldots(1-x_{2014})}{\prod_{i=1}^{2015} (1-x_i) }

E = f ( 1 ) f ( 1 ) \Rightarrow E = \dfrac{f'(1)}{f(1)}

E = j = 1 2015 j 2016 = 2015.2016 2 2016 = 1007.5 \displaystyle \Rightarrow E = \dfrac{\sum_{j=1}^{2015} j}{2016} = \dfrac{\frac{2015.2016}{2}}{2016} = \boxed{1007.5}


Note:

a . b a.b is the same as a × b a \times b

Moderator note:

Yes, you have the ideas for this.

I think that the easier approach is to realize we want to find the polynomial whose roots are of the form ( 1 x i ) ( 1 - x_i) , and then find the sumproduct of all but 1 (2nd last coefficient), and product of all (last coefficient).

Shandy Rianto
Jul 10, 2015

x 2015 + x 2014 + x 2013 + + x 2 + x + 1 = 0 x^{2015} + x^{2014} + x^{2013} + \ldots + x^2 + x + 1 = 0

From the equation above we have

a 1 = x 1 + x 2 + x 3 + + x 2015 = 1 a_1 = x_1 + x_2 + x_3 + \ldots + x_{2015} = -1

a 2 = x 1 x 2 + x 1 x 3 + x 1 x 4 + + x 2014 x 2015 = 1 a_2 = x_1 x_2 + x_1 x_3 + x_1 x _4 + \ldots + x_{2014} x_{2015} = 1

a 3 = x 1 x 2 x 3 + x 1 x 2 x 4 + + x 2013 x 2014 x 2015 = 1 a_3 = x_1 x_2 x_3 + x_1 x_2 x_4 + \ldots + x_{2013} x_{2014} x_{2015} = -1

\cdot

\cdot

\cdot

a 2015 = x 1 x 2 x 3 x 4 x 2014 x 2015 = 1 a_{2015} = x_1 x_2 x_3 x_4 \ldots x_{2014} x_{2015} = -1

a n = { 1 if n is even 1 if n is odd a_{n} = \begin{cases} 1 & \quad \text{if } n \text{ is even} \\ -1 & \quad \text{if } n \text{ is odd} \\ \end{cases}

Let

A = 1 1 x 1 + 1 1 x 2 + + 1 1 x 2015 A = \frac{1}{1- x_1} + \frac{1}{1- x_2} + \ldots + \frac{1}{1-x_{2015}}

A = ( 1 x 2 ) ( 1 x 3 ) ( 1 x 2015 ) + ( 1 x 1 ) ( 1 x 3 ) ( 1 x 2015 ) + + ( 1 x 1 ) ( 1 x 2 ) ( 1 x 2014 ) ( 1 x 1 ) ( 1 x 2 ) ( 1 x 3 ) ( 1 x 2015 ) A = \frac{(1- x_2)(1- x_3)\ldots (1- x_{2015}) + (1- x_1)(1- x_3) \ldots (1- x_{2015}) + \ldots + (1- x_1)(1- x_2) \ldots (1- x_{2014}) }{ (1- x_1)(1- x_2)(1-x_3) \ldots (1- x_{2015})}

A = 2015 2014 a 1 + 2013 a 2 + 2012 a 3 + + ( 1 ) n ( 2015 n ) a n + + a 2014 1 a 1 + a 2 a 3 + + ( 1 ) n a n + a 2015 A = \frac{2015 - 2014 a_1 + 2013 a_2 + 2012 a_3 + \ldots + (-1)^{n}(2015- n) a_n + \ldots + a_{2014} }{1 - a_1 + a_2 - a_3 + \ldots + (-1)^n a_n + \ldots - a_{2015} }

A = 2015 + 2014 + 2013 + + 2 + 1 1 + 1 + 1 + + 1 + 1 A = \frac{2015 + 2014 + 2013 + \ldots + 2 + 1 }{1 + 1 + 1 + \ldots + 1 + 1}

A = 2031120 2016 A = \frac{2031120}{2016}

A = 1007.5 A = \boxed{1007.5}

You don't need to calculate 2031120. Your third last step is A = 2015 + + 1 1 + + 1 = 1 2 2015 2016 2016 = 2015 2 A = \frac{2015+\ldots+1}{1+\ldots+1} = \frac{\frac12\cdot2015\cdot2016}{2016} = \frac{2015}2 .

Pi Han Goh - 5 years, 11 months ago
Skanda Prasad
Oct 3, 2017

My solution to this problem is just a matter of keen observation.


Consider 1 1 x 1 + 1 1 x 2 \dfrac{1}{1-x_1}+\dfrac{1}{1-x_2} , which can be written as 2 ( x 1 + x 2 ) 1 ( x 1 + x 2 ) + x 1 x 2 \dfrac{2-(x_1+x_2)}{1-(x_1+x_2)+x_1x_2}

Observe the coefficients of the Numerator : \text{Numerator}: 2 2 and 1 -1

Observe the coefficients of the Denominator : \text{Denominator}: 1 1 , 1 -1 and 1 1

Please have a note of the terms in the expression too... ( e 1 and e 2 ) (e_1\text{and}e_2) are the terms


Now consider 1 1 x 1 + 1 1 x 2 + 1 1 x 3 \dfrac{1}{1-x_1}+\dfrac{1}{1-x_2}+\dfrac{1}{1-x_3} which can be written as

3 2 ( x 1 + x 2 + x 3 ) + ( x 1 x 2 + x 2 x 3 + x 1 x 3 ) 1 ( x 1 + x 2 + x 3 ) + ( x 1 x 2 + x 2 x 3 + x 1 x 3 ) x 1 x 2 x 3 \dfrac{3-2(x_1+x_2+x_3)+(x_1x_2+x_2x_3+x_1x_3)}{1-(x_1+x_2+x_3)+(x_1x_2+x_2x_3+x_1x_3)-x_1x_2x_3}

\rightarrow Observe the coefficients of the Numerator : \text{Numerator}: 3 3 , 2 -2 and 1 1

\rightarrow Observe the coefficients of the Denominator : \text{Denominator}: 1 1 , 1 -1 , 1 1 and 1 -1

3 2 ( x 1 + x 2 + x 3 ) + ( x 1 x 2 + x 2 x 3 + x 1 x 3 ) 1 ( x 1 + x 2 + x 3 ) + ( x 1 x 2 + x 2 x 3 + x 1 x 3 ) x 1 x 2 x 3 \dfrac{3-2(x_1+x_2+x_3)+(x_1x_2+x_2x_3+x_1x_3)}{1-(x_1+x_2+x_3)+(x_1x_2+x_2x_3+x_1x_3)-x_1x_2x_3} can be written as 3 2 e 1 + 1 e 2 1 e 1 + e 2 e 3 \dfrac{3-2e_1+1e_2}{1-e_1+e_2-e_3}


So for 2015 2015 such terms, the coefficients in Numerator \text{Numerator} will be 2015 , 2014 , 2013 , 2012... 2 , 1 2015,-2014,2013,-2012...-2,1

And coefficients of denominator \text{denominator} will be 1 , 1 , 1 , 1....1 , 1 1,-1,1,-1....1,-1

So obviously the the expression of the question could be written as

2015 2014 e 1 + 2013 e 2 2012 e 3 + 2011 e 4 . . . 2 e 2013 + 1 e 2014 0 1 e 1 + e 2 e 3 + . . . e 2015 \dfrac{2015-2014e_1+2013e_2-2012e_3+2011e_4-...-2e_{2013}+1e_{2014}-0}{1-e_1+e_2-e_3+...-e_{2015}}

Where,

\rightarrow e 1 = x 1 = 1 e_1=\sum{x_1}=-1

\rightarrow e 2 = x 1 x 2 = 1 e_2=\sum{x_1x_2}=1

\rightarrow e 3 = x 1 x 2 x 3 = 1 e_3=\sum{x_1x_2x_3}=-1 and so on until

\rightarrow e 2015 = x 1 x 2 . . . x 2015 = 1 e_{2015}=x_1x_2...x_{2015}=-1


Therefore, we get 2015 + 2014 + 2013 + . . . + 2 + 1 1 + 1 + 1.... + 1 ( 2016 times) \dfrac{2015+2014+2013+...+2+1}{1+1+1....+1(2016\text{times)}}

= ( 2015 ) ( 2016 ) 2 ( 2016 ) =\dfrac{(2015)(2016)}{2(2016)} = 2015 2 = 1007.5 =\dfrac{2015}{2}=\boxed{1007.5}

Carsten Meyer
Apr 8, 2021

For simplicity, let N : = 2015 N:=2015 and define the monic polynomial P ( x ) : = k = 0 N x k = k = 1 N ( x x k ) , x k : roots of P ( x ) , P ( 1 ) = N + 1 0 \begin{aligned} P(x) &:= \sum_{k=0}^N x^k=\prod_{k=1}^N(x-x_k), &&& x_k&:\text{ roots of }P(x), &&& P(1) &= N+1\neq 0 \end{aligned} If we take the derivative P ( 1 ) ( x ) P^{(1)}(x) , the product formula always cancels exactly one factor of P ( x ) P(x) . With P ( 1 ) 0 P(1)\neq 0 we may write k = 1 N 1 1 x k = P ( 1 ) ( 1 ) P ( 1 ) = k = 0 N k 1 k 1 N + 1 = N ( N + 1 ) 2 ( N + 1 ) = N 2 = 1007.5 \sum_{k=1}^N\frac{1}{1-x_k}=\frac{P^{(1)}(1)}{P(1)} = \frac{ \sum_{k=0}^N k \cdot 1^{k-1} }{ N+1 }=\frac{N(N+1)}{2(N+1)}=\frac{N}{2}=\boxed{1007.5}

Advaith Kumar
May 18, 2020

note that x is 2016th root of unity which means that | x| = 1; now let x be a non-real root, then x conjugate must also be a root, now note pair all of the terms with their conjugate and upon summing each pair you will get 1007. Then note that for the last lone term its value is just 1/2 = 0.5 thus answer is 1007.5

Adam Madni
May 17, 2020

Notice that x sub 1008 is -1 while x sub (1008+k) and x sub (1008-k) are conjugates in the complex plane with magnitude 1. We can then find out that 1/(1-z1) + 1/(1-z2) where z1 and z2 are conjugates is equal to 1. Since 1/(1-x_1008) is equal to 1/2 and there are 1007 pairs of conjugates we have the sum is equal to 1007 + 1/2 or 1007.5

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...