The roots of the polynomial P ( x ) = x 4 − x 3 − x 2 − 1 are a , b , c , and d . If f ( x ) = x 6 − x 5 − x 3 − x 2 − x , what is the value of f ( a ) + f ( b ) + f ( c ) + f ( d ) ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
How does a+b+c+d = 1? I solved this problem using a different method but this one is more convenient.
Log in to reply
Using Vieta's formulas. You can read about it here .
Log in to reply
Did the same !!!
Oh! Yes, found the reason. Sorry for the inconvenience. I missed a particular detail.
P(x) q u a d = x 4 − x 3 − x 2 − 1 = 0 ⇒ x 5 − x 4 − x 3 − x = 0 ⇒ x 6 − x 5 − x 4 − x 2 = 0 s o f ( x ) = x 2 − x + 1 f o r a l l x ∈ { a , b , c , d } ⇒ f ( a ) + f ( b ) + f ( c ) + f ( d ) = ∑ a 2 − ∑ a + ∑ 1 = ∑ a 2 − ∑ a + 4 a l s o b y P ( x ) w e g e t ∑ a = 1 a n d ∑ a b = − 1 s o w e g e t ∑ a 2 = 3 ∴ f ( a ) + f ( b ) + f ( c ) + f ( d ) = 3 − 1 + 4 = quad 6(ans)
I didnt understand. Can you explain?
good manner
Problem Loading...
Note Loading...
Set Loading...
f ( x ) = x 6 − x 5 − x 3 − x 2 − x
= x 2 ( x 4 − x 3 − x 2 − 1 ) + x 4 − x 3 − x
= x 2 ( x 4 − x 3 − x 2 − 1 ) + ( x 4 − x 3 − x 2 − 1 ) + x 2 − x + 1
= ( x 2 + 1 ) P ( x ) + x 2 − x + 1
Since a , b , c and d are roots of P ( x )
⇒ P ( a ) = P ( b ) = P ( c ) = P ( d ) = 0
f ( a ) = ( a 2 + 1 ) P ( a ) + a 2 − a + 1 = 0 + a 2 − a + 1 = a 2 − a + 1
f ( b ) = b 2 − b + 1 f ( c ) = c 2 − c + 1 f ( d ) = d 2 − d + 1
Therefore,
f ( a ) + f ( b ) + f ( c ) + f ( d ) = ( a 2 + b 2 + c 2 + d 2 ) − ( a + b + c + d ) + ( 1 + 1 + 1 + 1 )
By Vieta's sums, we have:
a + b + c + d = 1
a 2 + b 2 + c 2 + d 2 = ( a + b + c + d ) 2 − 2 ( a b + a c + a d + b c + b d + c d ) = 1 2 − 2 ( − 1 ) = 3
⇒ f ( a ) + f ( b ) + f ( c ) + f ( d ) = 3 − 1 + 4 = 6