Polynomial

Algebra Level 5

The roots of the polynomial P ( x ) = x 4 x 3 x 2 1 P (x) = x^{4} - x^{3} - x^{2}-1 are a , b , c , a, b, c, and d . d. If f ( x ) = x 6 x 5 x 3 x 2 x , f(x) = x^{6} - x^{5} - x^{3} - x^{2} - x, what is the value of f ( a ) + f ( b ) + f ( c ) + f ( d ) ? f(a) + f(b) + f(c) + f(d)?


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

f ( x ) = x 6 x 5 x 3 x 2 x f(x) = x^6-x^5-x^3-x^2-x

= x 2 ( x 4 x 3 x 2 1 ) + x 4 x 3 x \quad \quad = x^2(x^4-x^3-x^2-1) + x^4-x^3 - x

= x 2 ( x 4 x 3 x 2 1 ) + ( x 4 x 3 x 2 1 ) + x 2 x + 1 \quad \quad = x^2(x^4-x^3-x^2-1) + (x^4-x^3 - x^2 -1) + x^2 - x + 1

= ( x 2 + 1 ) P ( x ) + x 2 x + 1 \quad \quad = (x^2+1) P(x) + x^2 - x + 1

Since a a , b b , c c and d d are roots of P ( x ) P(x)

P ( a ) = P ( b ) = P ( c ) = P ( d ) = 0 \Rightarrow P(a) = P(b) = P(c) = P(d) =0

f ( a ) = ( a 2 + 1 ) P ( a ) + a 2 a + 1 = 0 + a 2 a + 1 = a 2 a + 1 f(a) = (a^2+1)P(a) + a^2 - a +1 = 0 + a^2 - a +1 = a^2 - a +1

f ( b ) = b 2 b + 1 f ( c ) = c 2 c + 1 f ( d ) = d 2 d + 1 f(b) = b^2 - b +1\quad f(c) = c^2 - c +1\quad f(d) = d^2 - d +1

Therefore,

f ( a ) + f ( b ) + f ( c ) + f ( d ) = ( a 2 + b 2 + c 2 + d 2 ) ( a + b + c + d ) + ( 1 + 1 + 1 + 1 ) f(a) + f(b) + f(c) + f(d) = (a^2+b^2+c^2+d^2) - (a+b+c+d) + (1+1+1+1)

By Vieta's sums, we have:

a + b + c + d = 1 a+b+c+d = 1

a 2 + b 2 + c 2 + d 2 = ( a + b + c + d ) 2 2 ( a b + a c + a d + b c + b d + c d ) = 1 2 2 ( 1 ) = 3 a^2+b^2+c^2+d^2 = (a+b+c+d)^2-2(ab+ac+ad+bc+bd+cd) = 1^2 - 2(-1) = 3

f ( a ) + f ( b ) + f ( c ) + f ( d ) = 3 1 + 4 = 6 \Rightarrow f(a) + f(b) + f(c) + f(d) = 3 - 1 + 4 = \boxed {6}

How does a+b+c+d = 1? I solved this problem using a different method but this one is more convenient.

Priontu Chowdhury - 5 years, 11 months ago

Log in to reply

Using Vieta's formulas. You can read about it here .

Chew-Seong Cheong - 5 years, 11 months ago

Log in to reply

Did the same !!!

A Former Brilliant Member - 5 years, 7 months ago

Oh! Yes, found the reason. Sorry for the inconvenience. I missed a particular detail.

Priontu Chowdhury - 5 years, 11 months ago
Chinni Chaitanya
Mar 27, 2014

P(x) q u a d = x 4 x 3 x 2 1 = 0 x 5 x 4 x 3 x = 0 x 6 x 5 x 4 x 2 = 0 s o f ( x ) = x 2 x + 1 f o r a l l x { a , b , c , d } f ( a ) + f ( b ) + f ( c ) + f ( d ) = a 2 a + 1 = a 2 a + 4 a l s o b y P ( x ) w e g e t a = 1 a n d a b = 1 s o w e g e t a 2 = 3 f ( a ) + f ( b ) + f ( c ) + f ( d ) = 3 1 + 4 = quad =\quad { x }^{ 4 }-{ x }^{ 3 }-{ x }^{ 2 }-1\quad =\quad 0\\ \Rightarrow { x }^{ 5 }-{ x }^{ 4 }-{ x }^{ 3 }-x\quad =\quad 0\\ \Rightarrow { x }^{ 6 }-{ x }^{ 5 }-{ x }^{ 4 }-{ x }^{ 2 }\quad =\quad 0\\ so\quad f(x)\quad =\quad { x }^{ 2 }-x+1\quad for\quad all\quad x\quad \in \quad \{ a,b,c,d\} \\ \Rightarrow f(a)+f(b)+f(c)+f(d)\quad =\quad \sum { { a }^{ 2 } } -\sum { { a } } +\sum { 1 } \quad =\quad \sum { { a }^{ 2 } } -\sum { { a } } +4\\ also\quad by\quad P(x)\quad we\quad get\quad \sum { { a } } \quad =\quad 1\quad and\sum { ab } \quad =\quad -1\\ so\quad we\quad get\quad \sum { { a }^{ 2 } } \quad =\quad 3\\ \therefore f(a)+f(b)+f(c)+f(d)=3-1+4\quad = quad 6(ans)

I didnt understand. Can you explain?

Jayakumar Krishnan - 6 years, 12 months ago

good manner

Danang AchSa - 7 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...