Polynomials

Algebra Level 5

If the roots of the polynomial 2 x 3 4 x 2 + 7 x 5 = 0 2x^{3}-4x^{2}+7x-5=0 are a , b , c a,b,c then find the value of c y c a , b , c 1 ( b 4 ) ( a 2 ) + 2 a 4 \sum_{cyc}^{a,b,c}\frac{1}{(b-4)(a-2)+2a-4}


Source: Tallentex.


The answer is 0.888.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Siddharth Singh
Oct 14, 2015

Simplifying the expression we get:

1 ( a 2 ) ( b 2 ) + 1 ( b 2 ) ( c 2 ) + 1 ( c 2 ) ( a 2 ) = a + b + c 6 a b c 2 ( a b + b c + c a ) + 4 ( a + b + c ) 8 \frac{1}{(a-2)(b-2)}+\frac{1}{(b-2)(c-2)}+\frac{1}{(c-2)(a-2)}=\frac{a+b+c-6}{abc-2(ab+bc+ca)+4(a+b+c)-8}

from the polynomial: a + b + c = 2 a+b+c=2

a b + b c + c a = 7 2 ab+bc+ca=\frac{7}{2}

a b c = 5 2 abc=\frac{5}{2}

Substituting the values in the expression we get the answer as 0.8888 \boxed{0.8888}

Exactly, what I did.

Dev Sharma - 5 years, 8 months ago

If you write (a-2) as (2-a) and like that for all the roots in the expression...and make the necessary sign changes then you can put x=2 in the polynomial which will be your denominator. The calculation will be simpler.

Rudrayan Kundu - 2 years, 11 months ago
Aakash Khandelwal
Oct 15, 2015

Simplification tool: one root is unity ie. 1

Lu Chee Ket
Oct 15, 2015

Using Complex functions, just sum up for (a, b, c), (c, a, b) and (b, c, a):

0.333333333333333+0.333333333333333i

0.333333333333333-0.333333333333333i

0.222222222222222

Answer: 0.888888888888888

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...