Polynomials

Algebra Level 4

Let P ( x ) P(x) be the remainder when x 13 + x 7 x^{13} + x^7 is divided by ( x 1 ) 2 (x - 1)^2 . What is the value of P ( 2033 20 ) P\left(\frac {2033}{20} \right) ?


The answer is 2015.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let Q ( x ) Q(x) be the quotient when x 13 + x 7 x^{13}+x^7 is divided by ( x 1 ) 2 (x-1)^2 . Then, x 13 + x 7 = ( x 1 ) 2 Q ( x ) + P ( x ) ( 1 + x ) 13 + ( 1 + x ) 7 = x 2 Q ( x + 1 ) + P ( x + 1 ) P ( x + 1 ) = 2 + 20 x P ( x ) = 20 x 18 P ( 2033 20 ) = 2015 x^{13}+x^7=(x-1)^2 Q(x) + P(x) \\\implies (1+x)^{13}+(1+x)^7=x^2Q(x+1)+P(x+1) \\\implies P(x+1)=2+20x \\\implies P(x)= 20x-18 \\\implies P \left(\frac{2033}{20} \right) = \boxed{2015}

In the transition from the second line to the third, binomial theorem has been used.


Alternate Solution:

Note that P ( x ) P(x) is a linear polynomial.

Consider the following equation: x 13 + x 7 = ( x 1 ) 2 Q ( x ) + P ( x ) x^{13}+x^7=(x-1)^2 Q(x) + P(x)

Putting x = 1 x=1 , we see that P ( 1 ) = 2 P(1)=2 .

Now, differentiating the above equation and then putting x = 1 x=1 , we see that P ( x ) = P ( 1 ) = 20 P'(x)=P'(1)=20 .

From this much information on P ( x ) P(x) , we conclude that P ( x ) = 20 x 18 P(x)=20 x-18

Excellent and elegant solution! (+1)

Swapnil Das - 5 years ago

Log in to reply

Thanks! :)

Awesome!!! I did it by the second method...!!

Aaghaz Mahajan - 3 years, 1 month ago
Hung Woei Neoh
Jun 7, 2016

x 13 + x 7 = x 13 2 x 12 + x 11 + 2 x 12 4 x 11 + 2 x 10 + 3 x 11 6 x 10 + 3 x 9 + 4 x 10 8 x 9 + 4 x 8 + 5 x 9 10 x 8 + 5 x 7 + 6 x 8 12 x 7 + 6 x 6 + 8 x 7 16 x 6 + 8 x 5 + 10 x 6 20 x 5 + 10 x 4 + 12 x 5 24 x 4 + 12 x 3 + 14 x 4 28 x 3 + 14 x 2 + 16 x 3 32 x 2 + 16 x + 18 x 2 36 x + 18 + 20 x 18 = x 11 ( x 2 2 x + 1 ) + 2 x 10 ( x 2 2 x + 1 ) + 3 x 9 ( x 2 2 x + 1 ) + 4 x 8 ( x 2 2 x + 1 ) + 5 x 7 ( x 2 2 x + 1 ) + 6 x 6 ( x 2 2 x + 1 ) + 8 x 5 ( x 2 2 x + 1 ) + 10 x 4 ( x 2 2 x + 1 ) + 12 x 3 ( x 2 2 x + 1 ) + 14 x 2 ( x 2 2 x + 1 ) + 16 x ( x 2 2 x + 1 ) + 18 ( x 2 2 x + 1 ) + 20 x 18 = ( x 11 + 2 x 10 + 3 x 9 + 4 x 8 + 5 x 7 + 6 x 6 + 8 x 5 + 10 x 4 + 12 x 3 + 14 x 2 + 16 x + 18 ) ( x 1 ) 2 + 20 x 18 x^{13} + x^7\\ =\color{#D61F06}{x^{13}} \color{#20A900}{- 2x^{12}} \color{#CEBB00}{+ x^{11}} \color{#20A900}{+ 2x^{12}} \color{#CEBB00}{- 4x^{11}} \color{#EC7300}{+ 2x^{10}} \color{#CEBB00}{+ 3x^{11}} \color{#EC7300}{- 6x^{10}} \color{#3D99F6}{+ 3x^9} \color{#EC7300}{+4x^{10}} \color{#3D99F6}{- 8x^9} \color{#69047E}{+ 4x^8} \color{#3D99F6}{+5x^9} \color{#69047E}{- 10x^8} \color{#E81990}{+5x^7} \color{#69047E}{+6x^8} \color{#E81990}{- 12x^7} \color{teal}{+ 6x^6} \color{#E81990}{+ 8x^7} \color{teal}{- 16x^6} \color{cyan}{+ 8x^5} \color{teal}{+ 10x^6} \color{cyan}{- 20x^5} \color{#624F41}{+ 10x^4} \color{cyan}{+ 12x^5} \color{#624F41}{-24x^4} \color{magenta}{+12x^3} \color{#624F41}{+14x^4} \color{magenta}{- 28x^3} \color{olive}{+14x^2} \color{magenta}{+ 16x^3} \color{olive}{- 32x^2} \color{#BBBBBB}{+ 16x} \color{olive}{+ 18x^2} \color{#BBBBBB}{- 36x} + 18 \color{#BBBBBB}{+20x} - 18\\ =x^{11}(x^2-2x+1)+2x^{10}(x^2-2x+1)+3x^9(x^2-2x+1)+4x^8(x^2-2x+1)+5x^7(x^2-2x+1)+6x^6(x^2-2x+1)+8x^5(x^2-2x+1)+10x^4(x^2-2x+1)+12x^3(x^2-2x+1)+14x^2(x^2-2x+1)+16x(x^2-2x+1)+18(x^2-2x+1) + 20x-18\\ =(x^{11} + 2x^{10} + 3x^9 + 4x^8 + 5x^7 + 6x^6 + 8x^5 + 10x^4 + 12x^3 + 14x^2 + 16x + 18)(x-1)^2 + 20x-18

Therefore,

x 13 + x 7 ( x 1 ) 2 = ( x 11 + 2 x 10 + 3 x 9 + 4 x 8 + 5 x 7 + 6 x 6 + 8 x 5 + 10 x 4 + 12 x 3 + 14 x 2 + 16 x + 18 ) + 20 x 18 ( x 1 ) 2 \dfrac{x^{13} + x^7}{(x-1)^2} = (x^{11} + 2x^{10} + 3x^9 + 4x^8 + 5x^7 + 6x^6 + 8x^5 + 10x^4 + 12x^3 + 14x^2 + 16x + 18)+ \dfrac{20x-18}{(x-1)^2}

P ( x ) = 20 x 18 P ( 2033 20 ) = 20 ( 2033 20 ) 18 = 2033 18 = 2015 P(x) = 20x-18\\ P\left(\dfrac{2033}{20}\right) = 20\left(\dfrac{2033}{20}\right) - 18 = 2033 - 18 = \boxed{2015}

Did the same

Aditya Kumar - 5 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...