Let P ( x ) be the remainder when x 1 3 + x 7 is divided by ( x − 1 ) 2 . What is the value of P ( 2 0 2 0 3 3 ) ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Excellent and elegant solution! (+1)
Awesome!!! I did it by the second method...!!
x 1 3 + x 7 = x 1 3 − 2 x 1 2 + x 1 1 + 2 x 1 2 − 4 x 1 1 + 2 x 1 0 + 3 x 1 1 − 6 x 1 0 + 3 x 9 + 4 x 1 0 − 8 x 9 + 4 x 8 + 5 x 9 − 1 0 x 8 + 5 x 7 + 6 x 8 − 1 2 x 7 + 6 x 6 + 8 x 7 − 1 6 x 6 + 8 x 5 + 1 0 x 6 − 2 0 x 5 + 1 0 x 4 + 1 2 x 5 − 2 4 x 4 + 1 2 x 3 + 1 4 x 4 − 2 8 x 3 + 1 4 x 2 + 1 6 x 3 − 3 2 x 2 + 1 6 x + 1 8 x 2 − 3 6 x + 1 8 + 2 0 x − 1 8 = x 1 1 ( x 2 − 2 x + 1 ) + 2 x 1 0 ( x 2 − 2 x + 1 ) + 3 x 9 ( x 2 − 2 x + 1 ) + 4 x 8 ( x 2 − 2 x + 1 ) + 5 x 7 ( x 2 − 2 x + 1 ) + 6 x 6 ( x 2 − 2 x + 1 ) + 8 x 5 ( x 2 − 2 x + 1 ) + 1 0 x 4 ( x 2 − 2 x + 1 ) + 1 2 x 3 ( x 2 − 2 x + 1 ) + 1 4 x 2 ( x 2 − 2 x + 1 ) + 1 6 x ( x 2 − 2 x + 1 ) + 1 8 ( x 2 − 2 x + 1 ) + 2 0 x − 1 8 = ( x 1 1 + 2 x 1 0 + 3 x 9 + 4 x 8 + 5 x 7 + 6 x 6 + 8 x 5 + 1 0 x 4 + 1 2 x 3 + 1 4 x 2 + 1 6 x + 1 8 ) ( x − 1 ) 2 + 2 0 x − 1 8
Therefore,
( x − 1 ) 2 x 1 3 + x 7 = ( x 1 1 + 2 x 1 0 + 3 x 9 + 4 x 8 + 5 x 7 + 6 x 6 + 8 x 5 + 1 0 x 4 + 1 2 x 3 + 1 4 x 2 + 1 6 x + 1 8 ) + ( x − 1 ) 2 2 0 x − 1 8
P ( x ) = 2 0 x − 1 8 P ( 2 0 2 0 3 3 ) = 2 0 ( 2 0 2 0 3 3 ) − 1 8 = 2 0 3 3 − 1 8 = 2 0 1 5
Did the same
Problem Loading...
Note Loading...
Set Loading...
Let Q ( x ) be the quotient when x 1 3 + x 7 is divided by ( x − 1 ) 2 . Then, x 1 3 + x 7 = ( x − 1 ) 2 Q ( x ) + P ( x ) ⟹ ( 1 + x ) 1 3 + ( 1 + x ) 7 = x 2 Q ( x + 1 ) + P ( x + 1 ) ⟹ P ( x + 1 ) = 2 + 2 0 x ⟹ P ( x ) = 2 0 x − 1 8 ⟹ P ( 2 0 2 0 3 3 ) = 2 0 1 5
In the transition from the second line to the third, binomial theorem has been used.
Alternate Solution:
Note that P ( x ) is a linear polynomial.
Consider the following equation: x 1 3 + x 7 = ( x − 1 ) 2 Q ( x ) + P ( x )
Putting x = 1 , we see that P ( 1 ) = 2 .
Now, differentiating the above equation and then putting x = 1 , we see that P ′ ( x ) = P ′ ( 1 ) = 2 0 .
From this much information on P ( x ) , we conclude that P ( x ) = 2 0 x − 1 8