Polynomials are interesting!

Algebra Level 5

Find integers a a and b b such that ( x 2 x 1 ) (x^{2}-x-1) divides ( a x 17 + b x 16 + 1 ) (ax^{17}+bx^{16}+1) . Input your answer as a + b |a|+|b| .


The answer is 2584.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Aug 20, 2015

The roots of of x 2 x 1 = 0 x^2-x-1=0 are the golden ratios φ = 1 ± 5 2 \varphi =\frac{1\pm\sqrt{5}}{2} . As ( x 2 x 1 ) ( a x 17 + b x 16 + 1 ) (x^2-x-1) | (ax^{17} + bx^{16} + 1) . This means that φ \varphi are also those of a x 17 + b x 16 + 1 = 0 ax^{17} + bx^{16} + 1=0 .

We note that:

\(\begin{array} {} & \quad \space \space \space \varphi = \varphi & \Rightarrow \varphi^1 = F_1 \varphi + F_0 & \\ \varphi^2 - \varphi - 1 =0 & \Rightarrow \varphi^2 = \varphi + 1 & \Rightarrow \varphi^2 = F_2 \varphi + F_1 \\ \varphi^3 = \varphi^2 + \varphi & \Rightarrow \varphi^3 = 2\varphi + 1 & \Rightarrow \varphi^3 = F_3 \varphi + F_2 \\ \varphi^4 = 2\varphi^2 + \varphi & \Rightarrow \varphi^4 = 3\varphi + 2 & \Rightarrow \varphi^4 = F_4 \varphi + F_3 \\ \varphi^5 = 3\varphi^2 + 2\varphi & \Rightarrow \varphi^3 = 5\varphi + 3 & \Rightarrow \varphi^5 = F_5 \varphi + F_4 \\ & & \color{blue} {\Rightarrow \varphi^n = F_n \varphi + F_{n-1}} \end{array} \)

Therefore,

a φ 17 + b φ 16 + 1 = 0 a ( F 17 φ + F 16 ) + b ( F 16 φ + F 15 ) + 1 = 0 ( 1597 a + 987 b ) φ + 987 a + 610 b + 1 = 0 \begin{aligned} a\varphi^{17} + b\varphi^{16} + 1 & = 0 \\ a(F_{17} \varphi + F_{16} ) + b(F_{16} \varphi + F_{15}) + 1 & = 0 \\ (1597a + 987b)\varphi + 987a + 610b + 1 & = 0 \end{aligned}

Since φ \varphi is irrational, φ 987 a + 610 b 1597 a + 987 b \varphi \ne -\dfrac{987a + 610b}{1597a + 987b} , we have:

{ 1597 a + 987 b = 0 987 a + 610 b + 1 = 0 \begin{cases} 1597a + 987b = 0 \\ 987a + 610b + 1 = 0 \end{cases}

Solving the above equations, we get:

a = ± 987 , b = 1597 a + b = 987 + 1597 = 2584 a = \pm 987, b = \mp 1597 \quad \Rightarrow |a| + |b| = 987 + 1597 = \boxed{2584}

Moderator note:

In order to conclude that A x + B = 0 A = 0 , B = 0 Ax + B = 0 \Rightarrow A = 0, B = 0 , we first have to show that x B A x \neq \frac{- B}{A} .

In order to conclude that A x + B = 0 A = 0 , B = 0 Ax + B = 0 \Rightarrow A = 0, B = 0 , we first have to show that x B A x \neq \frac{- B}{A} .

Calvin Lin Staff - 5 years, 9 months ago

Log in to reply

Thanks, I have done the changes to the solution.

Chew-Seong Cheong - 5 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...