Polynomials through Integrals.

Calculus Level 4

Let f ( x ) f(x) is a real valued function defined by

f ( x ) = x 2 + x 2 1 1 t f ( t ) d t + x 3 1 1 f ( t ) d t \large f( x ) = { x }^{ 2 } + { x }^{ 2 }\int _{ -1 }^{ 1 }{ tf( t)\ dt } + { x }^{ 3 }\int _{ -1 }^{ 1 }{ f( t) } dt

Find 11 f ( 1 ) 11f(1) .


The answer is 25.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

敬全 钟
Apr 22, 2018

Let a = 1 1 t f ( t ) d t a=\int^{1}_{-1}tf(t)\ dt and b = 1 1 f ( t ) d t b=\int^{1}_{-1}f(t)\ dt . Then, we have f ( x ) = ( a + 1 ) x 2 + b x 3 . f(x)=(a+1)x^2+bx^3. Substitute this into the original equation yields f ( x ) = x 2 + x 2 1 1 ( t ( ( a + 1 ) t 2 + b t 3 ) ) d t + x 3 1 1 ( ( a + 1 ) t 2 + b t 3 ) d t = ( 2 b 5 + 1 ) x 2 + 2 ( a + 1 ) 3 x 3 . \begin{aligned} f(x)&=&x^2+x^2\int^{1}_{-1}\left(t\left((a+1)t^2+bt^3\right)\right)\ dt+x^3\int^1_{-1}\left((a+1)t^2+bt^3\right)\ dt\\ &=& \left( \frac{2b}{5} +1 \right) x^2+\frac{2(a+1)}{3}x^3. \end{aligned} Comparing the coefficients of the like terms gives the following system of simultaneous equations. { a = 2 b 5 b = 2 ( a + 1 ) 3 \begin{cases} a&=\frac{2b}{5}\\ b&=\frac{2(a+1)}{3} \end{cases} Solving gives a = 4 11 a=\frac{4}{11} and b = 10 11 b=\frac{10}{11} and hence f ( x ) = 15 11 x 2 + 10 11 x 3 . f(x)=\frac{15}{11}x^2+\frac{10}{11}x^3. This gives 11 f ( 1 ) = 25. 11f(1)=25.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...