Point inside a triangle

Geometry Level 4

The point P P is inside A B C \triangle ABC , such that P A B = 1 0 \angle PAB=10^\circ , P B A = 2 0 \angle PBA=20^\circ , P C A = 3 0 \angle PCA=30^\circ , and P A C = 4 0 \angle PAC=40^\circ .

Find the largest angle of A B C \triangle ABC in degrees.


The answer is 80.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Aug 24, 2017

From the angles given, we can find that A P B = 15 0 \angle APB = 150^\circ , A P C = 11 0 \angle APC = 110^\circ , and C P B = 10 0 \angle CPB = 100^\circ .

Let A B = 1 AB=1 , then by sine rule on A B P \triangle ABP :

A P sin 2 0 = B P sin 1 0 = A B sin 15 0 = 1 0.5 = 2 A P = 2 sin 2 0 B P = 2 sin 1 0 \begin{aligned} \frac {AP}{\sin 20^\circ} & = \frac {BP}{\sin 10^\circ} = \frac {AB}{\sin 150^\circ} = \frac 1{0.5} = 2 \\ \implies AP & = 2 \sin 20^\circ \\ BP & = 2 \sin 10^\circ \end{aligned}

Using sine rule again on A C P \triangle ACP :

A C sin 11 0 = A P sin 3 0 = 2 sin 2 0 0.5 A C = 4 sin 2 0 sin 11 0 \begin{aligned} \frac {AC}{\sin 110^\circ} & = \frac {AP}{\sin 30^\circ} = \frac {2 \sin 20^\circ}{0.5} \\ \implies AC & = 4 \sin 20^\circ \sin 110^\circ \end{aligned}

Let A C B = θ \angle ACB = \theta , then A B C = 13 0 θ \angle ABC = 130^\circ - \theta . Using sine rule on A B C \triangle ABC :

sin θ A B = sin ( 13 0 θ ) A C Note that A B = 1 and A C = 4 sin 2 0 sin 11 0 sin θ = sin ( 13 0 θ ) 4 sin 2 0 sin 11 0 By cos ( A B ) cos ( A + B ) 2 = sin A sin B = sin 13 0 cos θ cos 13 0 sin θ 2 ( cos 9 0 cos 13 0 ) = sin 13 0 cos θ cos 13 0 sin θ 2 cos 13 0 = tan 13 0 cos θ 2 + sin θ 2 Note that tan ( 18 0 x ) = tan x = tan 5 0 cos θ tan θ = tan 5 0 θ = 5 0 \begin{aligned} \frac {\sin \theta}{\color{#3D99F6}AB} & = \frac {\sin (130^\circ-\theta)}{\color{#3D99F6}AC} & \small \color{#3D99F6} \text{Note that }AB=1 \text{ and }AC = 4 \sin 20^\circ \sin 110^\circ \\ \sin \theta & = \frac {\sin (130^\circ-\theta)}{\color{#3D99F6}4 \sin 20^\circ \sin 110^\circ } & \small \color{#3D99F6} \text{By } \frac {\cos (A-B) - \cos (A+B)}2 = \sin A \sin B \\ & = \frac {\sin 130^\circ \cos \theta - \cos 130^\circ \sin \theta}{\color{#3D99F6}2 (\cos 90^\circ - \cos 130^\circ)} \\ & = \frac {\sin 130^\circ \cos \theta - \cos 130^\circ \sin \theta }{-2 \cos 130^\circ} \\ & = - \frac {{\color{#3D99F6}\tan 130^\circ} \cos \theta}2 + \frac {\sin \theta}2 & \small \color{#3D99F6} \text{Note that }\tan (180^\circ - x) = - \tan x \\ & = {\color{#3D99F6}\tan 50^\circ} \cos \theta \\ \tan \theta & = \tan 50^\circ \\ \implies \theta & = 50^\circ \end{aligned}

Therefore, the largest angle of A B C \triangle ABC is A B C = 18 0 5 0 5 0 = 8 0 \angle ABC = 180^\circ - 50^\circ - 50^\circ = \boxed{80^\circ}

Nice use of sine rule !

Utkarsh Kumar - 3 years, 9 months ago
Ajit Athle
Aug 24, 2017

This is a problem (#5) from USA Math Olympiad 1996: Solution (as obtained from - https://www.normalesup.org/~kortchem/olympiades/Problemes/mc96-97-01feb.pdf): Let D be the reflection of A across the line BP. Then triangle APD is isosceles with vertex angle ∠APD = 2(180 − ∠BPA) = 2(∠P AB + ∠ABP) = 2(10 + 20) = 60°, and so is equilateral. Also, ∠DBA = 2∠P BA = 40. Since ∠BAC = 50°, we have DB ⊥ AC. Let E be the intersection of DB with CP. Then ∠PED = 180 − ∠CED = 180 − (90 − ∠ACE) = 90 + 30 = 120 ° and so ∠PED + ∠DAP = 180°. We deduce that the quadrilateral APED is cyclic, and therefore ∠DEA = ∠DPA = 60°. Finally, we note that ∠DEA = 60° = ∠DEC. Since AC ⊥ DE, we deduce that A and C are symmetric across the line DE, which implies that BA = BC. Then ∠PCB =50-30=20° and ∠CBP=180-20-100=60°. This makes ∠ABC the largest at 80°.

I don't think the problem is well stated. What is meant by the largest angle of triangle ABC. Why not <CPA? Ed Gray

Edwin Gray - 3 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...