An algebra problem by James Wilson

Algebra Level 3

Let x , y , a 1 , a 2 , b 1 , b 2 , c 1 , c 2 x,y,a_1,a_2,b_1,b_2,c_1,c_2 be real numbers.

Given

a 1 ( x 2 y 2 ) 2 a 2 x y + b 1 x b 2 y + c 1 = 0 a_1(x^2-y^2)-2a_2xy+b_1x-b_2y+c_1=0 ,

a 2 ( x 2 y 2 ) + 2 a 1 x y + b 2 x + b 1 y + c 2 = 0 a_2(x^2-y^2)+2a_1xy+b_2x+b_1y+c_2=0 ,

b 1 b 2 = 2 ( a 1 c 2 + a 2 c 1 ) b_1b_2=2(a_1c_2+a_2c_1) ,

and

b 1 2 b 2 2 = 4 ( a 1 c 1 a 2 c 2 ) b_1^2-b_2^2=4(a_1c_1-a_2c_2) ,

y y takes the form y = 1 m a n b p a q b r a s t + a u v y=\frac{1}{m}\frac{a_nb_p-a_qb_r}{a_s^t+a_u^v} .

Find m 2 n 2 + p 2 q 2 + r 2 s 2 + t 2 u 2 + v 2 m^2-n^2+p^2-q^2+r^2-s^2+t^2-u^2+v^2 .

7 -7 -3 2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

James Wilson
Nov 8, 2020

Multiply the second equation by i i ; then add the first two equations; then proceed as follows: a 1 ( x 2 y 2 ) 2 a 2 x y + b 1 x b 2 y + c 1 + i [ a 2 ( x 2 y 2 ) + 2 a 1 x y + b 2 x + b 1 y + c 2 ] = 0 a_1(x^2-y^2)-2a_2xy+b_1x-b_2y+c_1+i[a_2(x^2-y^2)+2a_1xy+b_2x+b_1y+c_2]=0 a 1 ( x 2 y 2 ) 2 a 2 x y + b 1 x b 2 y + c 1 + i a 2 ( x 2 y 2 ) + i 2 a 1 x y + i b 2 x + i b 1 y + i c 2 = 0 \Leftrightarrow a_1(x^2-y^2)-2a_2xy+b_1x-b_2y+c_1+ia_2(x^2-y^2)+i2a_1xy+ib_2x+ib_1y+ic_2=0 a 1 ( x 2 y 2 ) + i a 2 ( x 2 y 2 ) + 2 i a 1 x y 2 a 2 x y + b 1 x + i b 2 x + i b 1 y b 2 y + c 1 + i c 2 = 0 \Leftrightarrow a_1(x^2-y^2)+ia_2(x^2-y^2)+2ia_1xy-2a_2xy+b_1x+ib_2x+ib_1y-b_2y+c_1+ic_2=0 ( a 1 + i a 2 ) ( x 2 y 2 ) + ( i a 1 a 2 ) ( 2 x y ) + ( b 1 + i b 2 ) x + ( i b 1 b 2 ) y + c 1 + i c 2 = 0 \Leftrightarrow (a_1+ia_2)(x^2-y^2)+(ia_1-a_2)(2xy)+(b_1+ib_2)x+(ib_1-b_2)y+c_1+ic_2=0 ( a 1 + i a 2 ) ( x 2 y 2 ) + ( i ) ( i ) ( i a 1 a 2 ) ( 2 x y ) + ( b 1 + i b 2 ) x + ( i ) ( i ) ( i b 1 b 2 ) y + c 1 + i c 2 = 0 \Leftrightarrow (a_1+ia_2)(x^2-y^2)+(i)(-i)(ia_1-a_2)(2xy)+(b_1+ib_2)x+(i)(-i)(ib_1-b_2)y+c_1+ic_2=0 ( a 1 + i a 2 ) ( x 2 y 2 ) + ( i ) ( i 2 a 1 ( i ) a 2 ) ( 2 x y ) + ( b 1 + i b 2 ) x + ( i ) ( i 2 b 1 ( i ) b 2 ) y + c 1 + i c 2 = 0 \Leftrightarrow (a_1+ia_2)(x^2-y^2)+(i)(-i^2a_1-(-i)a_2)(2xy)+(b_1+ib_2)x+(i)(-i^2b_1-(-i)b_2)y+c_1+ic_2=0 ( a 1 + i a 2 ) ( x 2 y 2 ) + i ( a 1 + i a 2 ) ( 2 x y ) + ( b 1 + i b 2 ) x + i ( b 1 + b 2 i ) y + c 1 + i c 2 = 0 \Leftrightarrow (a_1+ia_2)(x^2-y^2)+i(a_1+ia_2)(2xy)+(b_1+ib_2)x+i(b_1+b_2i)y+c_1+ic_2=0 ( a 1 + i a 2 ) ( x 2 y 2 ) + ( a 1 + i a 2 ) ( 2 i x y ) + ( b 1 + i b 2 ) x + ( b 1 + b 2 i ) i y + c 1 + i c 2 = 0 \Leftrightarrow (a_1+ia_2)(x^2-y^2)+(a_1+ia_2)(2ixy)+(b_1+ib_2)x+(b_1+b_2i)iy+c_1+ic_2=0 ( a 1 + i a 2 ) ( x 2 y 2 + 2 i x y ) + ( b 1 + i b 2 ) ( x + i y ) + c 1 + i c 2 = 0 \Leftrightarrow (a_1+ia_2)(x^2-y^2+2ixy)+(b_1+ib_2)(x+iy)+c_1+ic_2=0 ( a 1 + i a 2 ) ( x 2 + i x y + i x y + i 2 y 2 ) + ( b 1 + i b 2 ) ( x + i y ) + c 1 + i c 2 = 0 \Leftrightarrow (a_1+ia_2)(x^2+ixy+ixy+i^2y^2)+(b_1+ib_2)(x+iy)+c_1+ic_2=0 ( a 1 + i a 2 ) ( x ( x + i y ) + i y ( x + i y ) ) + ( b 1 + i b 2 ) ( x + i y ) + c 1 + i c 2 = 0 \Leftrightarrow (a_1+ia_2)(x(x+iy)+iy(x+iy))+(b_1+ib_2)(x+iy)+c_1+ic_2=0 ( a 1 + i a 2 ) ( x + i y ) 2 + ( b 1 + i b 2 ) ( x + i y ) + c 1 + i c 2 = 0 \Leftrightarrow (a_1+ia_2)(x+iy)^2+(b_1+ib_2)(x+iy)+c_1+ic_2=0 For simplicity, let z = x + i y , A = a 1 + i a 2 , B = b 1 + i b 2 , C = c 1 + i c 2 z=x+iy,A=a_1+ia_2,B=b_1+ib_2, C=c_1+ic_2 The equation then becomes A z 2 + B z + C = 0 Az^2+Bz+C=0 A ( z ) ( z + B A ) + C = 0 \Leftrightarrow A(z)\Big(z+\frac{B}{A}\Big)+C=0 ( z ) ( z + B A ) + C A = 0 \Leftrightarrow (z)\Big(z+\frac{B}{A}\Big)+\frac{C}{A}=0 ( z + ( B 2 A B 2 A ) ) ( z + ( B 2 A + B 2 A ) ) + C A = 0 \Leftrightarrow \Big(z+\Big(\frac{B}{2A}-\frac{B}{2A}\Big)\Big)\Big(z+\Big(\frac{B}{2A}+\frac{B}{2A}\Big)\Big)+\frac{C}{A}=0 ( ( z + B 2 A ) B 2 A ) ( ( z + B 2 A ) + B 2 A ) + C A = 0 \Leftrightarrow \Big(\Big(z+\frac{B}{2A}\Big)-\frac{B}{2A}\Big)\Big(\Big(z+\frac{B}{2A}\Big)+\frac{B}{2A}\Big)+\frac{C}{A}=0 ( z + B 2 A ) 2 + ( z + B 2 A ) B 2 A B 2 A ( z + B 2 A ) ( B 2 A ) 2 + C A = 0 \Leftrightarrow \Big(z+\frac{B}{2A}\Big)^2+\Big(z+\frac{B}{2A}\Big)\frac{B}{2A}-\frac{B}{2A}\Big(z+\frac{B}{2A}\Big)-\Big(\frac{B}{2A}\Big)^2+\frac{C}{A}=0 ( z + B 2 A ) 2 ( B 2 A ) 2 + C A = 0 \Leftrightarrow \Big(z+\frac{B}{2A}\Big)^2-\Big(\frac{B}{2A}\Big)^2+\frac{C}{A}=0 ( z + B 2 A ) 2 = ( B 2 A ) 2 C A \Leftrightarrow \Big(z+\frac{B}{2A}\Big)^2=\Big(\frac{B}{2A}\Big)^2-\frac{C}{A} ( z + B 2 A ) 2 = B 2 4 A 2 C A 4 A 4 A \Leftrightarrow \Big(z+\frac{B}{2A}\Big)^2=\frac{B^2}{4A^2}-\frac{C}{A}\cdot\frac{4A}{4A} ( z + B 2 A ) 2 = B 2 4 A C 4 A 2 \Leftrightarrow \Big(z+\frac{B}{2A}\Big)^2=\frac{B^2-4AC}{4A^2} z + B 2 A = ± B 2 4 A C 2 A \Leftrightarrow z+\frac{B}{2A}=\pm\frac{\sqrt{B^2-4AC}}{2A} z = B 2 A ± B 2 4 A C 2 A \Leftrightarrow z=-\frac{B}{2A}\pm\frac{\sqrt{B^2-4AC}}{2A} Next, notice the following B 2 4 A C = ( b 1 + i b 2 ) 2 4 ( a 1 + i a 2 ) ( c 1 + i c 2 ) B^2-4AC = (b_1+ib_2)^2-4(a_1+ia_2)(c_1+ic_2) = b 1 2 b 2 2 + 2 i b 1 b 2 4 ( a 1 c 1 a 2 c 2 ) 4 i ( a 1 c 2 + a 2 c 1 ) =b_1^2-b_2^2+2ib_1b_2-4(a_1c_1-a_2c_2)-4i(a_1c_2+a_2c_1) = b 1 2 b 2 2 4 ( a 1 c 1 a 2 c 2 ) + 2 i ( b 1 b 2 2 ( a 1 c 2 + a 2 c 1 ) ) =b_1^2-b_2^2-4(a_1c_1-a_2c_2)+2i(b_1b_2-2(a_1c_2+a_2c_1)) = 0 + 2 i ( 0 ) = 0 , =0+2i(0) =0, since b 1 2 b 2 2 = 4 ( a 1 c 1 a 2 c 2 ) b_1^2-b_2^2 = 4(a_1c_1-a_2c_2) and b 1 b 2 = 2 ( a 1 c 2 + a 2 c 1 ) b_1b_2=2(a_1c_2+a_2c_1) . Therefore, x + i y = z = B 2 A = b 1 + i b 2 2 ( a 1 + i a 2 ) = 1 2 ( a 1 i a 2 ) ( b 1 + i b 2 ) ( a 1 i a 2 ) ( a 1 + i a 2 ) x+iy=z=-\frac{B}{2A}=-\frac{b_1+ib_2}{2(a_1+ia_2)}=-\frac{1}{2}\frac{(a_1-ia_2)(b_1+ib_2)}{(a_1-ia_2)(a_1+ia_2)} = 1 2 a 1 b 1 + a 2 b 2 + i ( a 1 b 2 a 2 b 1 ) a 1 2 + a 2 2 = 1 2 a 1 b 1 + a 2 b 2 a 1 2 + a 2 2 + i 1 2 a 2 b 1 a 1 b 2 a 1 2 + a 2 2 =-\frac{1}{2}\frac{a_1b_1+a_2b_2+i(a_1b_2-a_2b_1)}{a_1^2+a_2^2}=-\frac{1}{2}\frac{a_1b_1+a_2b_2}{a_1^2+a_2^2}+i\frac{1}{2}\frac{a_2b_1-a_1b_2}{a_1^2+a_2^2} Since a 1 , a 2 , b 1 , b 2 , x , y a_1,a_2,b_1,b_2,x,y are all real, we can equate the real and imaginary parts of the equation. In particular, y = 1 2 a 2 b 1 a 1 b 2 a 1 2 + a 2 2 y=\frac{1}{2}\frac{a_2b_1-a_1b_2}{a_1^2+a_2^2} So, m 2 n 2 + p 2 q 2 + r 2 s 2 + t 2 u 2 + v 2 = 2 2 2 2 + 1 2 1 2 + 2 2 1 2 + 2 2 2 2 + 2 2 = 7 m^2-n^2+p^2-q^2+r^2-s^2+t^2-u^2+v^2 = 2^2-2^2+1^2-1^2+2^2-1^2+2^2-2^2+2^2=7 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...