Let x , y , a 1 , a 2 , b 1 , b 2 , c 1 , c 2 be real numbers.
Given
a 1 ( x 2 − y 2 ) − 2 a 2 x y + b 1 x − b 2 y + c 1 = 0 ,
a 2 ( x 2 − y 2 ) + 2 a 1 x y + b 2 x + b 1 y + c 2 = 0 ,
b 1 b 2 = 2 ( a 1 c 2 + a 2 c 1 ) ,
and
b 1 2 − b 2 2 = 4 ( a 1 c 1 − a 2 c 2 ) ,
y takes the form y = m 1 a s t + a u v a n b p − a q b r .
Find m 2 − n 2 + p 2 − q 2 + r 2 − s 2 + t 2 − u 2 + v 2 .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
Multiply the second equation by i ; then add the first two equations; then proceed as follows: a 1 ( x 2 − y 2 ) − 2 a 2 x y + b 1 x − b 2 y + c 1 + i [ a 2 ( x 2 − y 2 ) + 2 a 1 x y + b 2 x + b 1 y + c 2 ] = 0 ⇔ a 1 ( x 2 − y 2 ) − 2 a 2 x y + b 1 x − b 2 y + c 1 + i a 2 ( x 2 − y 2 ) + i 2 a 1 x y + i b 2 x + i b 1 y + i c 2 = 0 ⇔ a 1 ( x 2 − y 2 ) + i a 2 ( x 2 − y 2 ) + 2 i a 1 x y − 2 a 2 x y + b 1 x + i b 2 x + i b 1 y − b 2 y + c 1 + i c 2 = 0 ⇔ ( a 1 + i a 2 ) ( x 2 − y 2 ) + ( i a 1 − a 2 ) ( 2 x y ) + ( b 1 + i b 2 ) x + ( i b 1 − b 2 ) y + c 1 + i c 2 = 0 ⇔ ( a 1 + i a 2 ) ( x 2 − y 2 ) + ( i ) ( − i ) ( i a 1 − a 2 ) ( 2 x y ) + ( b 1 + i b 2 ) x + ( i ) ( − i ) ( i b 1 − b 2 ) y + c 1 + i c 2 = 0 ⇔ ( a 1 + i a 2 ) ( x 2 − y 2 ) + ( i ) ( − i 2 a 1 − ( − i ) a 2 ) ( 2 x y ) + ( b 1 + i b 2 ) x + ( i ) ( − i 2 b 1 − ( − i ) b 2 ) y + c 1 + i c 2 = 0 ⇔ ( a 1 + i a 2 ) ( x 2 − y 2 ) + i ( a 1 + i a 2 ) ( 2 x y ) + ( b 1 + i b 2 ) x + i ( b 1 + b 2 i ) y + c 1 + i c 2 = 0 ⇔ ( a 1 + i a 2 ) ( x 2 − y 2 ) + ( a 1 + i a 2 ) ( 2 i x y ) + ( b 1 + i b 2 ) x + ( b 1 + b 2 i ) i y + c 1 + i c 2 = 0 ⇔ ( a 1 + i a 2 ) ( x 2 − y 2 + 2 i x y ) + ( b 1 + i b 2 ) ( x + i y ) + c 1 + i c 2 = 0 ⇔ ( a 1 + i a 2 ) ( x 2 + i x y + i x y + i 2 y 2 ) + ( b 1 + i b 2 ) ( x + i y ) + c 1 + i c 2 = 0 ⇔ ( a 1 + i a 2 ) ( x ( x + i y ) + i y ( x + i y ) ) + ( b 1 + i b 2 ) ( x + i y ) + c 1 + i c 2 = 0 ⇔ ( a 1 + i a 2 ) ( x + i y ) 2 + ( b 1 + i b 2 ) ( x + i y ) + c 1 + i c 2 = 0 For simplicity, let z = x + i y , A = a 1 + i a 2 , B = b 1 + i b 2 , C = c 1 + i c 2 The equation then becomes A z 2 + B z + C = 0 ⇔ A ( z ) ( z + A B ) + C = 0 ⇔ ( z ) ( z + A B ) + A C = 0 ⇔ ( z + ( 2 A B − 2 A B ) ) ( z + ( 2 A B + 2 A B ) ) + A C = 0 ⇔ ( ( z + 2 A B ) − 2 A B ) ( ( z + 2 A B ) + 2 A B ) + A C = 0 ⇔ ( z + 2 A B ) 2 + ( z + 2 A B ) 2 A B − 2 A B ( z + 2 A B ) − ( 2 A B ) 2 + A C = 0 ⇔ ( z + 2 A B ) 2 − ( 2 A B ) 2 + A C = 0 ⇔ ( z + 2 A B ) 2 = ( 2 A B ) 2 − A C ⇔ ( z + 2 A B ) 2 = 4 A 2 B 2 − A C ⋅ 4 A 4 A ⇔ ( z + 2 A B ) 2 = 4 A 2 B 2 − 4 A C ⇔ z + 2 A B = ± 2 A B 2 − 4 A C ⇔ z = − 2 A B ± 2 A B 2 − 4 A C Next, notice the following B 2 − 4 A C = ( b 1 + i b 2 ) 2 − 4 ( a 1 + i a 2 ) ( c 1 + i c 2 ) = b 1 2 − b 2 2 + 2 i b 1 b 2 − 4 ( a 1 c 1 − a 2 c 2 ) − 4 i ( a 1 c 2 + a 2 c 1 ) = b 1 2 − b 2 2 − 4 ( a 1 c 1 − a 2 c 2 ) + 2 i ( b 1 b 2 − 2 ( a 1 c 2 + a 2 c 1 ) ) = 0 + 2 i ( 0 ) = 0 , since b 1 2 − b 2 2 = 4 ( a 1 c 1 − a 2 c 2 ) and b 1 b 2 = 2 ( a 1 c 2 + a 2 c 1 ) . Therefore, x + i y = z = − 2 A B = − 2 ( a 1 + i a 2 ) b 1 + i b 2 = − 2 1 ( a 1 − i a 2 ) ( a 1 + i a 2 ) ( a 1 − i a 2 ) ( b 1 + i b 2 ) = − 2 1 a 1 2 + a 2 2 a 1 b 1 + a 2 b 2 + i ( a 1 b 2 − a 2 b 1 ) = − 2 1 a 1 2 + a 2 2 a 1 b 1 + a 2 b 2 + i 2 1 a 1 2 + a 2 2 a 2 b 1 − a 1 b 2 Since a 1 , a 2 , b 1 , b 2 , x , y are all real, we can equate the real and imaginary parts of the equation. In particular, y = 2 1 a 1 2 + a 2 2 a 2 b 1 − a 1 b 2 So, m 2 − n 2 + p 2 − q 2 + r 2 − s 2 + t 2 − u 2 + v 2 = 2 2 − 2 2 + 1 2 − 1 2 + 2 2 − 1 2 + 2 2 − 2 2 + 2 2 = 7 .