Too large of a matrix

Algebra Level 4

α α + β α + β + γ 3 α 4 α + 3 β 5 α + 4 β + 3 γ 6 α 9 α + 6 β 11 α + 9 β + 6 γ \begin{vmatrix} \alpha & \alpha +\beta & \alpha +\beta +\gamma \\ 3\alpha & 4\alpha +3\beta & 5\alpha +4\beta +3\gamma \\ 6\alpha & 9\alpha +6\beta & 11\alpha +9\beta +6\gamma \end{vmatrix}

Given the constants α , β , γ \alpha, \beta, \gamma are roots to the equation z 3 = 1 z^3 = 1 with α \alpha being a real number. What is the value of the determinant above?

3 α -3 \alpha 1 -1 2 -2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Oct 25, 2018

Since α \alpha , β \beta , and γ \gamma are third roots of unity 1 1 , ω \omega , and ω 2 \omega^2 and α \alpha is real, α = 1 \alpha = 1 . Let β = ω \beta = \omega and γ = ω 2 \gamma = \omega^2 .

A = α α + β α + β + γ 3 α 4 α + 3 β 5 α + 4 β + 3 γ 6 α 9 α + 6 β 11 α + 9 β + 6 γ = 1 1 + ω 1 + ω + ω 2 3 4 + 3 ω 5 + 4 ω + 3 ω 2 6 9 + 6 ω 11 + 9 ω + 6 ω 2 Note that 1 + ω + ω 2 = 0 = 1 1 + ω 0 3 4 + 3 ω 2 + ω 6 9 + 6 ω 5 + 3 ω = 1 1 + ω 0 0 1 2 + ω 0 3 5 + 3 ω row 2 - 3 row 1 row 3 - 6 row 1 = 1 1 + ω 0 0 1 2 + ω 0 0 1 row 3 - 2 row 2 = 1 \begin{aligned} A & = \begin{vmatrix} \alpha & \alpha + \beta & \alpha + \beta + \gamma \\ 3\alpha & 4\alpha + 3\beta & 5\alpha + 4\beta + 3\gamma \\ 6\alpha & 9\alpha + 6\beta & 11\alpha + 9\beta + 6\gamma \end{vmatrix} \\ & = \begin{vmatrix} 1 & 1 + \omega & \color{#3D99F6} 1 + \omega + \omega^2 \\ 3 & 4 + 3\omega & \color{#3D99F6} 5 + 4\omega + 3\omega^2 \\ 6 & 9 + 6\omega & \color{#3D99F6} 11 + 9\omega + 6\omega^2 \end{vmatrix} & \small \color{#3D99F6} \text{Note that }1+\omega +\omega^2 = 0 \\ & = \begin{vmatrix} 1 & 1 + \omega & \color{#3D99F6} 0 \\ 3 & 4 + 3\omega & \color{#3D99F6} 2 + \omega \\ 6 & 9 + 6\omega & \color{#3D99F6} 5 + 3\omega \end{vmatrix} \\ & = \begin{vmatrix} 1 & 1 + \omega & 0 \\ 0 & 1 & 2 + \omega \\ 0 & 3 & 5 + 3\omega \end{vmatrix} \begin{matrix} \\ \small \color{#3D99F6} \text{row 2 - 3 row 1} \\ \small \color{#3D99F6} \text{row 3 - 6 row 1} \end{matrix} \\ & = \begin{vmatrix} 1 & 1 + \omega & 0 \\ 0 & 1 & 2 + \omega \\ 0 & 0 & -1 \end{vmatrix} \begin{matrix} \\ \\ \small \color{#3D99F6} \text{row 3 - 2 row 2} \end{matrix} \\ & = \boxed{-1} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...