An algebra problem by Aly Ahmed

Algebra Level 3

Find the minimum value of

( a 2 + a + 1 ) ( b 2 + b + 1 ) ( c 2 + c + 1 ) ( d 2 + d + 1 ) a b c d \frac{ (a^2+a+1)(b^2+b+1)(c^2+c+1)(d^2+d+1) }{abcd}

where a a , b b , c c , and d d are positive real numbers.


The answer is 81.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

The given expression is ( a + 1 a + 1 ) ( b + 1 b + 1 ) ( c + 1 c + 1 ) ( d + 1 d + 1 ) ( 2 + 1 ) ( 2 + 1 ) ( 2 + 1 ) ( 2 + 1 ) = 81 (a+\dfrac{1}{a}+1)(b+\dfrac{1}{b}+1)(c+\dfrac{1}{c}+1)(d+\dfrac{1}{d}+1)\geq (2+1)(2+1)(2+1)(2+1)=\boxed {81}

Chew-Seong Cheong
Mar 31, 2020

( a 2 + a + 1 ) ( b 2 + b + 1 ) ( c 2 + c + 1 ) ( d 2 + d + 1 ) a b c d = ( a + 1 + 1 a ) ( b + 1 + 1 b ) ( c + 1 + 1 c ) ( d + 1 + 1 d ) \begin{aligned} \frac {(a^2+a+1)(b^2+b+1)(c^2+c+1)(d^2+d+1)}{abcd} & = \left(a+1+\frac 1a\right)\left(b+1+\frac 1b\right)\left(c+1+\frac 1c\right)\left(d+1+\frac 1d\right)\end{aligned}

By AM-GM inequality , for positive real, a + 1 a 2 a × 1 a = 2 a + \dfrac 1a \ge 2\sqrt{a \times \dfrac 1a} = 2 . Therefore,

( a + 1 + 1 a ) ( b + 1 + 1 b ) ( c + 1 + 1 c ) ( d + 1 + 1 d ) 3 4 = 81 \begin{aligned} \left(a+1+\frac 1a\right)\left(b+1+\frac 1b\right)\left(c+1+\frac 1c\right)\left(d+1+\frac 1d\right) \ge 3^4 = \boxed{81}\end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...