Positive roots of a polynomial

Algebra Level 3

Solve for x > 0 x>0 ,

( 12 x 1 ) ( 6 x 1 ) ( 4 x 1 ) ( 3 x 1 ) = 5 (12x-1)(6x-1)(4x-1)(3x-1) = 5


The answer is 0.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Karthik Kannan
Jun 25, 2014

( 12 x 1 ) ( 6 x 1 ) ( 4 x 1 ) ( 3 x 1 ) = 5 (12x-1)(6x-1)(4x-1)(3x-1)=5

( ( 12 x 1 ) ( 3 x 1 ) ) ( ( 6 x 1 ) ( 4 x 1 ) ) = 5 \therefore \left( (12x-1)(3x-1)\right)\left( (6x-1)(4x-1)\right)=5

( 36 x 2 15 x + 1 ) ( 24 x 2 10 x + 1 ) = 5 \therefore (36x^{2}-15x+1)(24x^{2}-10x+1)=5

( 3 ( 12 x 2 5 x ) + 1 ) ( 2 ( 12 x 2 5 x ) + 1 ) = 5 \therefore (3(12x^{2}-5x)+1)(2(12x^{2}-5x)+1)=5

Let 12 x 2 5 x = t 12x^{2}-5x=t

( 3 t + 1 ) ( 2 t + 1 ) = 5 \therefore (3t+1)(2t+1)=5

6 t 2 + 5 t 4 = 0 \therefore 6t^{2}+5t-4=0

Solving the quadratic we obtain the roots as:

t = 1 2 t=\displaystyle\frac{1}{2} or t = 4 3 t=\displaystyle\frac{-4}{3}

Case 1: \text{Case 1:}

12 x 2 5 x = 1 2 12x^{2}-5x=\displaystyle\frac{1}{2}

24 x 2 10 x + 1 = 0 \therefore 24x^{2}-10x+1=0

x = 1 2 \therefore x=\displaystyle\frac{1}{2} or x = 1 12 x=\displaystyle\frac{-1}{12}

Since only positive solutions are required we shall discard x = 1 12 x=\displaystyle\frac{-1}{12}

Case 2: \text{Case 2:}

12 x 2 5 x = 4 3 12x^{2}-5x=\displaystyle\frac{-4}{3}

36 x 2 15 x + 4 = 0 \therefore 36x^{2}-15x+4=0

As this equation yields complex roots we shall discard them.

Thus the required answer is x = 0.5 x=\boxed{0.5}

Great manipulation.

Nishant Sharma - 6 years, 11 months ago
Deepanshu Gupta
Aug 21, 2014

I Have Very short method for This Question.

let

12 x 1 = t 12x-1=t .

so eqn becomes:

t ( t 1 ) ( t 2 ) ( t 3 ) = 5 4 3 2 t(t-1)(t-2)(t-3)=5*4*3*2 .

t = 5 t=5 .

x = 1 / 2 = 0.5 x=1/2 =0.5 .

Q.E.D

Best Solution..!!

Karan Shekhawat - 6 years, 8 months ago

awesome and fantastic!!

Adarsh Kumar - 6 years, 8 months ago
Isaac Lu
Oct 10, 2014

( 12 x 1 ) ( 6 x 1 ) ( 4 x 1 ) ( 3 x 1 ) = 5 (12x-1)(6x-1)(4x-1)(3x-1)=5

LaTeX \color{#ffffff}{\LaTeX}

Multiply both sides by 1 2 3 4 \text{Multiply both sides by } 1\cdot 2 \cdot 3 \cdot 4

1 ( 12 x 1 ) 2 ( 6 x 1 ) 3 ( 4 x 1 ) 4 ( 3 x 1 ) = 5 4 3 2 1 \displaystyle\color{#0000ff}{1\cdot}(12x-1)\color{#0000ff}{\cdot2\cdot}(6x-1)\color{#0000ff}{\cdot3\cdot}(4x-1)\color{#0000ff}{\cdot4\cdot}(3x-1)=5\color{#0000ff}{\cdot4\cdot}\color{#0000ff}{3\cdot}\color{#0000ff}{2\cdot}\color{#0000ff}{1}

( 12 x 1 ) ( 12 x 2 ) ( 12 x 3 ) ( 12 x 4 ) = 5 4 3 2 1 (12x-1)(12x-2)(12x-3)(12x-4)=5\cdot4\cdot3\cdot2\cdot1

LaTeX \color{#ffffff}{\LaTeX}

Let a = 12 x 1 \text{Let }a=12x-1

( 12 x 1 ) ( 12 x 1 1 ) ( 12 x 1 2 ) ( 12 x 1 3 ) = 5 4 3 2 1 (12x-1)(12x-1-1)(12x-1-2)(12x-1-3)=5\cdot4\cdot3\cdot2\cdot1

LaTeX \color{#ffffff}{\LaTeX}

Definition of a factorial: \text{Definition of a factorial: }

a ( a 1 ) ( a 2 ) ( a 3 ) = 5 4 3 2 1 a(a-1)(a-2)(a-3)=5\cdot4\cdot3\cdot2\cdot1

a ! = 5 ! a! = 5!

a = 5 a = 5

5 = 12 x 1 5 = 12x - 1

x = 1 2 \boxed{\color{#0000ff}{\displaystyle x=\frac{1}{2}}}

The factorial step is invalid since 2 -2 satisfies the equation, and it is not known whether a a can be a nonnegative integer or not.

Jake Lai - 6 years, 6 months ago

Log in to reply

If a = 2 , will it satisfy the representation for a = 12 x 1 ? \text{If }a=-2\text{, will it satisfy the representation for }a=12x-1\text{?}

Note that it is known that x > 0 . From there, we shall know the range of values of a: ( 1 , ) \text{Note that it is known that }x>0\text{. From there, we shall know the range of values of a: }(-1, \infty)

Clearly, -2 is out of range. \text{Clearly, -2 is out of range.}

Although I think what you meant was that factorial step isn’t necessary. \text{Although I think what you meant was that factorial step isn't necessary.}

And in that case, I happen to observe that it follows a pattern and that I immediately \text{And in that case, I happen to observe that it follows a pattern and that I immediately} associated it to factorials. \text{associated it to factorials.}

Isaac Lu - 5 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...