Positive solution required!

Algebra Level 3

1 x 2 10 x 29 + 1 x 2 10 x 45 2 x 2 10 x 69 = 0 \dfrac 1{x^2-10x-29}+\dfrac1{x^2-10x-45}-\dfrac 2{x^2-10x-69}=0

Find the positive solution to the above equation.


The answer is 13.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ahmed Arup Shihab
Mar 10, 2015

Let x 2 10 x 29 = a x^2-10x-29=a

Then the given equation becomes ,

1 a + 1 a 16 2 a 40 = 0 \frac{1}{a}+\frac{1}{a-16} - \frac{2}{a-40}=0

640 64 a a ( a 16 ) ( a 40 ) = 0 \Rightarrow \frac{640-64a}{a(a-16)(a-40)} =0

640 64 a = 0 a = 10 \Rightarrow 640-64a=0 \Rightarrow a=10

x 2 10 x 29 = 10 \Rightarrow x^2-10x-29=10

x = 13 , 3 \Rightarrow x=13 ,-3

So the ans is 13 \fbox{13}

Good Job ! Jolly Good Job !

Vijay Simha - 2 years, 9 months ago

think u meant a-16 for the denominator of the second fraction

Steven Lee - 6 years, 3 months ago

Log in to reply

Thanks. Edited.

Ahmed Arup Shihab - 6 years, 3 months ago
Chew-Seong Cheong
Mar 10, 2015

Let y = x 5 y 2 = x 2 10 x + 25 y=x-5\quad \Rightarrow y^2 = x^2-10x+25 .

1 x 2 10 x 29 + 1 x 2 10 x 45 2 x 2 10 x 69 = 0 \Rightarrow \dfrac {1}{x^2-10x-29}+\dfrac {1}{x^2-10x-45}-\dfrac {2}{x^2-10x-69} = 0

1 y 2 54 + 1 y 2 70 2 y 2 94 = 0 \dfrac {1}{y^2-54}+ \dfrac {1}{y^2-70}- \dfrac {2}{y^2-94} = 0

( y 2 70 ) ( y 2 94 ) + ( y 2 54 ) ( y 2 94 ) 2 ( y 2 54 ) ( y 2 70 ) ( y 2 54 ) ( y 2 70 ) ( y 2 94 ) = 0 \dfrac {(y^2-70)(y^2-94)+(y^2-54)(y^2-94)-2(y^2-54)(y^2-70)}{(y^2-54)(y^2-70)(y^2-94)} = 0

x 2 164 x + 6580 + x 2 148 x + 5076 22 x 2 248 x + 7560 ( y 2 54 ) ( y 2 70 ) ( y 2 94 ) = 0 \dfrac {x^2-164x+6580+x^2-148x+5076-22x^2-248x+7560}{(y^2-54)(y^2-70)(y^2-94)} = 0

64 y 2 + 4096 ( y 2 54 ) ( y 2 70 ) ( y 2 94 ) = 0 \dfrac {-64y^2+4096}{(y^2-54)(y^2-70)(y^2-94)} = 0

64 y 2 + 4096 = 0 64 y 2 = 4096 y 2 = 64 y = ± 8 \Rightarrow -64y^2+4096 = 0 \quad \Rightarrow 64y^2=4096 \quad \Rightarrow y^2=64 \quad \Rightarrow y=\pm 8

{ y = + 8 x 5 = 8 x = 13 y = 8 x 5 = 8 x = 3 \Rightarrow \begin{cases} y = +8 & \Rightarrow x-5 = 8 & x = \boxed{13} \\ y = -8 & \Rightarrow x-5 = -8 & x = -3 \end{cases}

Sir, Is there a method to know which dummy variable must be substituted in equation? I substituted in such a way that a= x 2 10 x 29 {x^2-10x-29} and ended up in x = 5 ± 3 6 x=5\pm 3\sqrt { 6 }

Anandhu Raj - 6 years, 3 months ago

Log in to reply

I used y = x 5 y=x-5 because it is a perfect square. It eliminates the middle x x term.

Chew-Seong Cheong - 6 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...