x 2 − 1 0 x − 2 9 1 + x 2 − 1 0 x − 4 5 1 − x 2 − 1 0 x − 6 9 2 = 0
Find the positive solution to the above equation.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Good Job ! Jolly Good Job !
think u meant a-16 for the denominator of the second fraction
Let y = x − 5 ⇒ y 2 = x 2 − 1 0 x + 2 5 .
⇒ x 2 − 1 0 x − 2 9 1 + x 2 − 1 0 x − 4 5 1 − x 2 − 1 0 x − 6 9 2 = 0
y 2 − 5 4 1 + y 2 − 7 0 1 − y 2 − 9 4 2 = 0
( y 2 − 5 4 ) ( y 2 − 7 0 ) ( y 2 − 9 4 ) ( y 2 − 7 0 ) ( y 2 − 9 4 ) + ( y 2 − 5 4 ) ( y 2 − 9 4 ) − 2 ( y 2 − 5 4 ) ( y 2 − 7 0 ) = 0
( y 2 − 5 4 ) ( y 2 − 7 0 ) ( y 2 − 9 4 ) x 2 − 1 6 4 x + 6 5 8 0 + x 2 − 1 4 8 x + 5 0 7 6 − 2 2 x 2 − 2 4 8 x + 7 5 6 0 = 0
( y 2 − 5 4 ) ( y 2 − 7 0 ) ( y 2 − 9 4 ) − 6 4 y 2 + 4 0 9 6 = 0
⇒ − 6 4 y 2 + 4 0 9 6 = 0 ⇒ 6 4 y 2 = 4 0 9 6 ⇒ y 2 = 6 4 ⇒ y = ± 8
⇒ { y = + 8 y = − 8 ⇒ x − 5 = 8 ⇒ x − 5 = − 8 x = 1 3 x = − 3
Sir, Is there a method to know which dummy variable must be substituted in equation? I substituted in such a way that a= x 2 − 1 0 x − 2 9 and ended up in x = 5 ± 3 6
Log in to reply
I used y = x − 5 because it is a perfect square. It eliminates the middle x term.
Problem Loading...
Note Loading...
Set Loading...
Let x 2 − 1 0 x − 2 9 = a
Then the given equation becomes ,
a 1 + a − 1 6 1 − a − 4 0 2 = 0
⇒ a ( a − 1 6 ) ( a − 4 0 ) 6 4 0 − 6 4 a = 0
⇒ 6 4 0 − 6 4 a = 0 ⇒ a = 1 0
⇒ x 2 − 1 0 x − 2 9 = 1 0
⇒ x = 1 3 , − 3
So the ans is 1 3