Positive ( x , y ) (x,y)

Algebra Level 4

x y + x y = 35 xy + \frac{x}{y} = 35

How many positive integer solutions ( x , y ) (x,y) exist for this equation?

0 1 2 3 4 5

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

x × ( y + 1 y ) = 35 x = 35 y y 2 + 1 Since y and y 2 + 1 are coprime for y > 1 , y 2 + 1 divides 35 for x to be an integer. y = 2 is the only value satisfying the relation. ( x , y ) = ( 14 , 2 ) is the only solution to the above equation. \begin{aligned}x\times (y+\dfrac{1}{y})&=35\\ \implies x&=\dfrac{35y}{y^2+1}\\ \text{Since }y \text{ and } y^2+1 &\text { are coprime for } y>1,\\ \implies y^2+1 \text{ divides } 35 &\text{ for x to be an integer.}\\ y=2 \text{ is the only } &\text{value satisfying the relation.}\\ \implies (x,y)=(14,2) &\text{ is the only solution to the above equation.}\end{aligned}

@Anirudh Sreekumar Awesome

Sumukh Bansal - 3 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...