Potential Telescoping Series

Calculus Level 3

S = 1 1 1 2 + 1 2 1 4 + 1 3 1 6 + 1 4 S=\frac { 1 }{ 1 } -\frac { 1 }{ 2 } +\frac { 1 }{ 2 } -\frac { 1 }{ 4 } +\frac { 1 }{ 3 } -\frac { 1 }{ 6 } +\frac { 1 }{ 4 } -\dots

Assuming the pattern continues, determine the value of S S .

The sum does not converge to a finite value. π \pi 2 \sqrt { 2 } The sum converges, but its exact value cannot be calculated. 1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Apr 20, 2017

S = 1 1 1 2 + 1 2 1 4 + 1 3 1 6 + 1 4 = k = 1 ( 1 k 1 2 k ) = k = 1 1 2 k = lim n H n 2 where H n is the n th harmonic number. \begin{aligned} S & = \frac 11 - \frac 12 + \frac 12 - \frac 14 + \frac 13 - \frac 16 + \frac 14 - \cdots \\ & = \sum_{k=1}^\infty \left(\frac 1k - \frac 1{2k} \right) \\ & = \sum_{k=1}^\infty \frac 1{2k} \\ & = \lim_{n \to \infty} \frac {H_n}2 \quad \quad \small \color{#3D99F6} \text{where }H_n \text{ is the }n^\text{th} \text{ harmonic number.} \end{aligned}

Since lim n H n \displaystyle \lim_{n \to \infty} H_n does not converge, S S does not converge .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...