Potentially good?

There are two stationery fields of force F = a y ı ^ \vec{F} = ay\hat{\imath} and F = a x ı ^ + b y ȷ ^ \vec{F} = ax\hat{\imath} + by\hat{\jmath} , where ı ^ \hat{\imath} and ȷ ^ \hat{\jmath} are the unit vectors of the x x and y y axes, and a a and b b are constants. Find out which of these fields arise from a potential.

F = a y ı ^ \vec{F} = ay\hat{\imath} Both F = a y ı ^ \vec{F} = ay\hat{\imath} and F = a x ı ^ + b y ȷ ^ \vec{F} = ax\hat{\imath} + by\hat{\jmath} F = a x ı ^ + b y ȷ ^ \vec{F} = ax\hat{\imath} + by\hat{\jmath}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Kishore S. Shenoy
Aug 10, 2015

First of all, how to check whether a field is conservative(potential field)?

C F d r = 0 \displaystyle\oint_C \vec{F} \mathrm{d}\vec{r} = 0

Stoke's theorem states that

C F d r = S ( × F ) d a \displaystyle\oint_C \vec{F} \mathrm{d}\vec{r} = \int_S (\nabla \times \vec{F})\: \mathrm{d}\vec{a}

So if ( × F ) = 0 (\nabla \times \vec{F}) = 0 , we can say a force to be conservative.


= x ı ^ + y ȷ ^ + z k ^ \displaystyle\nabla= \frac{\partial}{\partial x} \hat{\imath} + \frac{\partial}{\partial y} \hat{\jmath} + \frac{\partial}{\partial z} \hat{k}


Let's take 1 s t \displaystyle 1^{\mathrm{st}} Force,

F 1 = a y ı ^ \displaystyle\vec{F_1} = ay\hat{\imath}

× F 1 = ı ^ ȷ ^ k ^ x y z a y 0 0 = a y z ȷ ^ a y y k ^ = a k ^ 0 \begin{aligned}\displaystyle\nabla \times \vec{F_1} &= \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k}\\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ ay & 0&0\end{vmatrix} \\&= \displaystyle\frac{\partial\: ay}{\partial z}\hat{\jmath} - \frac{\partial\:ay}{\partial y} \hat{k} \\&=\displaystyle -a\hat{k} \\&\neq 0\end{aligned}

Hence F 1 \;\vec{F_1}\; is not a potential field or a conservative force.


Let's take 2 n d \displaystyle 2^{\mathrm{nd}} Force,

F 2 = a x ı ^ + b y ȷ ^ \displaystyle \vec{F_2} = ax\hat{\imath} + by\hat{\jmath}

× F 2 = ı ^ ȷ ^ k ^ x y z a x b y 0 = b y z ı ^ + a x z ȷ ^ + ( b y x a x y ) k ^ = 0 \begin{aligned} \nabla \times \vec{F_2} & =\begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k}\\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ ax & by&0\end{vmatrix} \\ &=\displaystyle -\frac{\partial\: by}{\partial z} \hat{\imath} + \frac{\partial \: ax}{\partial z} \hat{\jmath} +\left(\frac{\partial\: by}{\partial x} - \frac{\partial \: ax}{\partial y}\right)\hat{k} \\&= 0\end{aligned}

F 2 = a x ı ^ + b y ȷ ^ ∴\; \boxed{\vec{F_2} = ax\hat{\imath} + by\hat{\jmath}} is a potential field or a conservative force.

Not to be pedantic, but I think the question should be refrained as ‘which fields arise from a potential’ or ‘which fields have a potential energy associated with them’ . Otherwise it’s correct

Rohan Joshi - 4 months, 1 week ago

Log in to reply

Corrected.

Kishore S. Shenoy - 1 month, 1 week ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...