Power 5

Calculus Level 4

n = 1 n 5 3 n = X \sum_{n=1}^ \infty \frac{ { n }^{ 5 }}{ 3^n } = X

X X can be expressed in the form a b \dfrac{a}{b} , where a a and b b are coprime positive integers. Find a + b a + b .


The answer is 277.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

For 1 < x < 1 -1< x < 1 , we have:

n = 0 x n = 1 1 x Differentiate both sides n = 1 n x n 1 = 1 ( 1 x ) 2 Multiply both sides by x n = 1 n x n = x ( 1 x ) 2 Differentiate again n = 1 n 2 x n 1 = 1 + x ( 1 x ) 3 × x again n = 1 n 2 x n = x ( 1 + x ) ( 1 x ) 3 Differentiate again n = 1 n 3 x n 1 = 1 + 4 x + x 2 ( 1 x ) 4 × x again n = 1 n 3 x n = x + 4 x 2 + x 3 ( 1 x ) 4 Differentiate again n = 1 n 4 x n 1 = 1 + 11 x + 11 x 2 + x 3 ( 1 x ) 5 × x again n = 1 n 4 x n = x + 11 x 2 + 11 x 3 + x 4 ( 1 x ) 5 Differentiate again n = 1 n 5 x n 1 = 1 + 26 x + 66 x 2 + 26 x 3 + x 4 ( 1 x ) 6 × x again n = 1 n 5 x n = x + 26 x 2 + 66 x 3 + 26 x 4 + x 5 ( 1 x ) 6 Put x = 1 3 n = 1 n 5 3 n = 1 3 + 26 3 2 + 66 3 3 + 26 3 4 + 1 3 5 ( 1 1 3 ) 6 = 273 4 \begin{aligned} \sum_{n=0}^\infty x^n & = \frac 1{1-x} & \small {\color{#3D99F6}\text{Differentiate both sides}} \\ \sum_{n=1}^\infty nx^{n-1} & = \frac 1{(1-x)^2} & \small {\color{#3D99F6}\text{Multiply both sides by }x} \\ \sum_{n=1}^\infty nx^n & = \frac x{(1-x)^2} & \small {\color{#3D99F6}\text{Differentiate again}} \\ \sum_{n=1}^\infty n^2x^{n-1} & = \frac {1+x}{(1-x)^3} & \small {\color{#3D99F6} \times x \text{ again}} \\ \sum_{n=1}^\infty n^2x^n & = \frac {x(1+x)}{(1-x)^3} & \small {\color{#3D99F6}\text{Differentiate again}} \\ \sum_{n=1}^\infty n^3x^{n-1} & = \frac {1+4x+x^2}{(1-x)^4} & \small {\color{#3D99F6} \times x \text{ again}} \\ \sum_{n=1}^\infty n^3x^n & = \frac {x+4x^2+x^3}{(1-x)^4} & \small {\color{#3D99F6}\text{Differentiate again}} \\ \sum_{n=1}^\infty n^4x^{n-1} & = \frac {1+11x+11x^2+x^3}{(1-x)^5} & \small {\color{#3D99F6} \times x \text{ again}} \\ \sum_{n=1}^\infty n^4x^n & = \frac {x+11x^2+11x^3+x^4}{(1-x)^5} & \small {\color{#3D99F6}\text{Differentiate again}} \\ \sum_{n=1}^\infty n^5x^{n-1} & = \frac {1+26x+66x^2+26x^3+x^4}{(1-x)^6} & \small {\color{#3D99F6} \times x \text{ again}} \\ \sum_{n=1}^\infty n^5x^n & = \frac {x+26x^2+66x^3+26x^4+x^5}{(1-x)^6} & \small {\color{#3D99F6} \text{Put }x = \frac 13} \\ \sum_{n=1}^\infty \frac {n^5}{3^n} & = \frac {\frac 13 +\frac {26}{3^2}+\frac {66}{3^3}+\frac {26}{3^4}+\frac 1{3^5}}{\left(1-\frac 13\right)^6} \\ & = \frac {273}4 \end{aligned}

a + b = 273 + 4 = 277 \implies a+b = 273+4 = \boxed{277} .


Viki Zeta
Nov 4, 2016

Infinite sum of GP x n = 1 1 x d d x x n = d d x 1 1 x n x n 1 = ( 1 x ) 2 x n x n 1 = x ( 1 x ) 2 n x n = x ( 1 x ) 2 d d x n x n = d d x x ( 1 x ) 2 n 2 x n = x ( 1 + x ) ( 1 x ) 3 Similarly, n 5 x n = x ( x 4 + 26 x 3 + 66 x 2 + 26 x + 1 ) ) ( x 1 ) 6 for x = 1 3 n 5 3 n = 1 3 ( ( 1 3 ) 4 + 26 ( 1 3 ) 3 + 66 ( 1 3 ) 2 + 26 ( 1 3 ) + 1 ) ) ( ( 1 3 ) 1 ) 6 = 273 4 a + b = 273 + 4 = 277 \text{Infinite sum of GP} \\ \sum x^n = \dfrac{1}{1-x}\\ \dfrac{d}{dx} \sum x^n = \dfrac{d}{dx} \dfrac{1}{1-x} \\ \sum nx^{n-1} = (1-x)^{-2} \\ x\sum nx^{n-1} = x(1-x)^{-2} \\ \sum nx^n = x(1-x)^{-2 } \\ \dfrac{d}{dx} \sum nx^n = \dfrac{d}{dx} x(1-x)^{-2} \\ \sum n^2 x^n = x (1+x)(1-x)^{-3} \\ \text{Similarly, } \\ \sum n^5 x^n = \dfrac{x(x^4+26 x^3+66 x^2+26 x+1))}{(x-1)^6}\\ \boxed{\text{for }x = \dfrac{1}{3}} \\ \sum \dfrac{n^5}{3^n} = \dfrac{\dfrac{1}{3}((\dfrac{1}{3})^4+26 (\dfrac{1}{3})^3+66 (\dfrac{1}{3})^2+26 (\dfrac{1}{3})+1))}{((\dfrac{1}{3})-1)^6}\\ = \dfrac{273}{4} \\ \color{#3D99F6}{\boxed{\therefore a + b = 273 + 4 = 277}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...