n = 1 ∑ ∞ 3 n n 5 = X
X can be expressed in the form b a , where a and b are coprime positive integers. Find a + b .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Infinite sum of GP ∑ x n = 1 − x 1 d x d ∑ x n = d x d 1 − x 1 ∑ n x n − 1 = ( 1 − x ) − 2 x ∑ n x n − 1 = x ( 1 − x ) − 2 ∑ n x n = x ( 1 − x ) − 2 d x d ∑ n x n = d x d x ( 1 − x ) − 2 ∑ n 2 x n = x ( 1 + x ) ( 1 − x ) − 3 Similarly, ∑ n 5 x n = ( x − 1 ) 6 x ( x 4 + 2 6 x 3 + 6 6 x 2 + 2 6 x + 1 ) ) for x = 3 1 ∑ 3 n n 5 = ( ( 3 1 ) − 1 ) 6 3 1 ( ( 3 1 ) 4 + 2 6 ( 3 1 ) 3 + 6 6 ( 3 1 ) 2 + 2 6 ( 3 1 ) + 1 ) ) = 4 2 7 3 ∴ a + b = 2 7 3 + 4 = 2 7 7
Problem Loading...
Note Loading...
Set Loading...
For − 1 < x < 1 , we have:
n = 0 ∑ ∞ x n n = 1 ∑ ∞ n x n − 1 n = 1 ∑ ∞ n x n n = 1 ∑ ∞ n 2 x n − 1 n = 1 ∑ ∞ n 2 x n n = 1 ∑ ∞ n 3 x n − 1 n = 1 ∑ ∞ n 3 x n n = 1 ∑ ∞ n 4 x n − 1 n = 1 ∑ ∞ n 4 x n n = 1 ∑ ∞ n 5 x n − 1 n = 1 ∑ ∞ n 5 x n n = 1 ∑ ∞ 3 n n 5 = 1 − x 1 = ( 1 − x ) 2 1 = ( 1 − x ) 2 x = ( 1 − x ) 3 1 + x = ( 1 − x ) 3 x ( 1 + x ) = ( 1 − x ) 4 1 + 4 x + x 2 = ( 1 − x ) 4 x + 4 x 2 + x 3 = ( 1 − x ) 5 1 + 1 1 x + 1 1 x 2 + x 3 = ( 1 − x ) 5 x + 1 1 x 2 + 1 1 x 3 + x 4 = ( 1 − x ) 6 1 + 2 6 x + 6 6 x 2 + 2 6 x 3 + x 4 = ( 1 − x ) 6 x + 2 6 x 2 + 6 6 x 3 + 2 6 x 4 + x 5 = ( 1 − 3 1 ) 6 3 1 + 3 2 2 6 + 3 3 6 6 + 3 4 2 6 + 3 5 1 = 4 2 7 3 Differentiate both sides Multiply both sides by x Differentiate again × x again Differentiate again × x again Differentiate again × x again Differentiate again × x again Put x = 3 1
⟹ a + b = 2 7 3 + 4 = 2 7 7 .