Proportionalities

Algebra Level 2

If 2 x = 3 y = 1 2 z 2^x = 3^y = 12^z , find the value of 2 x + 1 y 1 z \frac 2x + \frac1y - \frac1z ?

12 0 1 2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Alvin Willio
Jul 6, 2015

Assume that

a = 2 x = 3 y = 1 2 z a=2^{x}=3^{y}=12^{z}

Then we get,

log 2 a = x \log _{ 2 }{ a } =x

log 3 a = y \log _{ 3 }{ a } =y

log 12 a = z \log _{ 12 }{ a } =z

Substitute them,

2 log 2 a + 1 log 3 a 1 log 12 a \frac { 2 }{ \log _{ 2 }{ a } } +\frac { 1 }{ \log _{ 3 }{ a } } -\frac { 1 }{ \log _{ 12 }{ a } }

= log 2 4 log 2 a + log 3 3 log 3 a log 12 12 log 12 a =\frac { \log _{ 2 }{ 4 } }{ \log _{ 2 }{ a } } +\frac { \log _{ 3 }{ 3 } }{ \log _{ 3 }{ a } } -\frac { \log _{ 12 }{ 12 } }{ \log _{ 12 }{ a } }

= log a 4 + log a 3 log a 12 =\log _{ a }{ 4 } +\log _{ a }{ 3 } -\log _{ a }{ 12 }

= log a ( 4 × 3 ÷ 12 ) =\log _{ a }{ (4\times 3\div 12) }

= log a 1 =\log _{ a }{ 1 }

= 0 =0

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...