Power is powerful

1 2 + 2 2 + 3 2 + 4 2 + 5 2 + 6 2 + 7 2 + 8 2 + 9 2 + 1 0 2 770 = ? \frac {1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+9^2+10^2}{770} = \ ?

2 2 1 3 \frac 13 1 2 \frac 12 1 4 \frac 14 1 1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Sum of first n n square numbers = n ( n + 1 ) ( 2 n + 1 ) 6 =\dfrac{n(n+1)(2n+1)}{6}

10 ( 11 ) ( 21 ) 6 ( 770 ) = 1 2 \implies \dfrac{10(11)(21)}{6(770)}=\boxed{\dfrac{1}{2}}

Can you please derive the formula?

DΣΔD ρθθι - 11 months, 1 week ago

Log in to reply

Here you go!

Vinayak Srivastava - 11 months, 1 week ago

Thanks bro😊

DΣΔD ρθθι - 11 months, 1 week ago
Yajat Shamji
Jul 4, 2020

1 2 + 2 2 + 3 2 + 4 2 + 5 2 + 6 2 + 7 2 + 8 2 + 9 2 + 1 0 2 = 385 1^2 + 2^2 + 3^2 + 4^2 + 5^2 + 6^2 + 7^2 + 8^2 + 9^2 + 10^2 = 385

385 770 \frac{385}{770} = = 1 2 \frac{1}{2}

Answer \rightarrow 1 2 \frac{1}{2}

Mahdi Raza
Jul 4, 2020

Sum of first n n square numbers is:

n ( n + 1 ) ( 2 n + 1 ) 6 \dfrac{n(n+1)(2n+1)}{6}

Then we have

\[\begin{align} \text{Expression} &= \dfrac{10(11)(21)}{6} \div 770 \\ &= \dfrac{385}{770} \\& = \boxed{\dfrac{1}{2}}

\end{align}\]

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...