Power of 2

In terms of a natural number n n , find the highest power of 2 that divides ( n + 1 ) ( n + 2 ) ( n + 3 ) ( 2 n ) (n+1)(n+2)(n+3)\cdots(2n) .

n 1 n-1 2 n 3 2n-3 n n n + 1 n+1 2 n 2n

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mathh Mathh
Sep 27, 2015

The standard notation for the highest power of 2 2 that divides k k is υ 2 ( k ) \upsilon_2(k) . You can see it in, e.g., the LTE paper .

υ 2 ( ( n + 1 ) ( n + 2 ) ( 2 n ) ) = υ 2 ( ( 2 n ) ! n ! ) = υ 2 ( ( 2 n ) ! ) υ 2 ( n ! ) \upsilon_2((n+1)(n+2)\cdots (2n))=\upsilon_2\left(\frac{(2n)!}{n!}\right)=\upsilon_2((2n)!)-\upsilon_2(n!)

See Legendre's formula .

= ( 2 n 2 + 2 n 4 + 2 n 8 + ) ( n 2 + n 4 + n 8 + ) = n = n =\left(\lfloor\frac{2n}{2}\rfloor+\lfloor\frac{2n}{4}\rfloor+\lfloor\frac{2n}{8}\rfloor+\cdots\right)-\left(\lfloor\frac{n}{2}\rfloor+\lfloor\frac{n}{4}\rfloor+\lfloor\frac{n}{8}\rfloor+\cdots\right)=\lfloor n\rfloor = n


Alternative solution: ( n + 1 ) ( n + 2 ) ( 2 n ) = ( 2 n ) ! n ! = ( 1 3 5 ( 2 n 1 ) ) ( 2 4 6 2 n ) n ! (n+1)(n+2)\cdots (2n)=\frac{(2n)!}{n!}=\frac{(1\cdot 3\cdot 5\cdots (2n-1))\cdot (2\cdot 4\cdot 6\cdots 2n)}{n!}

= ( 1 3 5 ( 2 n 1 ) ) ( ( 2 1 ) ( 2 2 ) ( 2 3 ) ( 2 n ) ) n ! = ( 1 3 5 ( 2 n 1 ) ) ( 2 n n ! ) n ! = ( 1 3 5 ( 2 n 1 ) ) 2 n =\frac{(1\cdot 3\cdot 5\cdots (2n-1))\cdot ((2\cdot 1)\cdot (2\cdot 2)\cdot (2\cdot 3)\cdots (2\cdot n))}{n!}=\frac{(1\cdot 3\cdot 5\cdots (2n-1))\cdot (2^nn!)}{n!}=(1\cdot 3\cdot 5\cdots (2n-1))\cdot 2^n .

Thanks for the L T E LTE link.

Akshat Sharda - 5 years, 8 months ago

I read the LTE paper - but got lost on the first page of notation. I don't think my brain can wrap itself around these number theory questions :-(

Tony Flury - 5 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...