Power of 2

Number Theory Level pending

True or False?

If x 1 , x 2 , , x n x_1, x_2 , \ldots , x_n are positive numbers satisfying ( 1 + x 1 ) ( 1 + x 2 ) ( 1 + x 3 ) ( 1 + x n ) 2 n , (1+x_1)(1+x_2)(1+x_3)\cdots(1+x_n) \geq 2^n , then x 1 x 2 x 3 x n \sqrt{x_1x_2x_3 \cdots x_n} must be equal to 2.

True False

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ossama Ismail
Mar 28, 2017

Given that ( 1 + x 1 ) ( 1 + x 2 ) ( 1 + x 3 ) ( 1 + x n ) 2 n , where x i > 0 , for i = 1 , 2 , , n (1+x_1)(1+x_2)(1+x_3)\cdots(1+x_n) \geq 2^n , \text{where} \ x_i > 0 , \ \text{for} \ \ i = 1,2,\cdots, n

dividing the above equation by 2 n 2^n we got ( 1 + x 1 ) 2 ( 1 + x 2 ) 2 ( 1 + x 3 ) 2 ( 1 + x n ) 2 1 \dfrac{(1+x_1)}{2}\dfrac{(1+x_2)}{2}\dfrac{(1+x_3)}{2}\cdots \dfrac{(1+x_n)}{2} \geq 1

and

( 1 + x 1 ) 2 ( 1 + x 2 ) 2 ( 1 + x 3 ) 2 ( 1 + x n ) 2 x 1 x 2 x n = x 1 x 2 x 3 x n = 1 \dfrac{(1+x_1)}{2}\dfrac{(1+x_2)}{2}\dfrac{(1+x_3)}{2} \cdots \dfrac{(1+x_n)}{2} \geq \sqrt{x_1}\sqrt{x_2} \cdots \sqrt{x_n} = \sqrt{x_1x_2x_3 \cdots x_n} = 1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...