Power of 2001

Calculus Level pending

If a n + 1 = 1 1 a n a_{n+1} = \dfrac{1}{1 - a_n} for n 1 n \geq 1 and a 3 = a 1 a_3 = a_1

then find the value of ( a 2001 ) 2001 (a_{2001})^{2001}


The answer is -1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Utsav Banerjee
Apr 20, 2015

Since a n + 1 = 1 1 a n a_{n+1}= \frac {1}{1-a_{n}} for n 1 n \geq 1 , we get

a 3 = 1 1 a 2 = 1 1 1 1 a 1 = 1 1 a 1 a_{3}= \frac {1}{1-a_{2}}= \frac {1}{1- \frac {1}{1-a_{1}}} = 1- \frac {1}{a_{1}}

Also, it is given that a 3 = a 1 a_{3}=a_{1} , we get a 1 2 a 1 + 1 = 0 a_{1}^{2}-a_{1}+1=0 . Solving this equation, we get a 1 = 1 ± i 3 2 a_{1}= \frac {1 \pm i \sqrt{3}}{2} .

Clearly, a 5 = 1 1 a 3 = 1 1 a 1 = a 1 a_{5}=1- \frac {1}{a_{3}}=1- \frac {1}{a_{1}}=a_{1} . Proceeding similarly, or by using mathematical induction, we can show that a n = a 1 = 1 ± i 3 2 = c o s ( π 3 ) ± i s i n ( π 3 ) a_{n}=a_{1}= \frac {1 \pm i \sqrt{3}}{2}=cos( \frac { \pi}{3}) \pm i\,sin( \frac { \pi}{3}) for all odd values of n n .

Hence, ( a 2001 ) 2001 = ( a 1 ) 2001 = ( c o s ( π 3 ) ± i s i n ( π 3 ) ) 2001 (a_{2001})^{2001}=(a_{1})^{2001}=(cos( \frac { \pi}{3}) \pm i\,sin( \frac { \pi}{3}))^{2001} .

Using De Moivre's Theorem, we get

( a 2001 ) 2001 = c o s ( 2001 π 3 ) ± i s i n ( 2001 π 3 ) = c o s ( 667 π ) ± i s i n ( 667 π ) = 1 (a_{2001})^{2001}=cos( \frac {2001 \pi}{3}) \pm i\,sin( \frac {2001 \pi}{3})=cos(667 \pi) \pm i\,sin(667 \pi)=-1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...