Power of Derivatives

Calculus Level 1

f ( x ) = e x sin x f(x) = e^x \cdot \sin x

For non-zero values of f ( x ) f(x) , simplify the expression below. log 2 f ( 2016 ) ( x ) f ( x ) \log_{2} \dfrac{f^{(2016)} (x)}{f(x)}

Notation : f ( n ) ( x ) f^{(n)}(x) denotes the n th n^\text{th} derivative of f ( x ) f(x) .


The answer is 1008.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

f ( x ) = e x sin x f(x) = e^x \cdot \sin x

We can use the product rule of differentiation with g ( x ) = e x g(x) = e^x and h ( x ) = sin x h(x) = \sin x respectively.

Thus, f ( x ) = g ( x ) h ( x ) + h ( x ) g ( x ) = e x sin x + cos x e x = e x ( sin x + cos x ) f'(x) = g'(x) \cdot h(x) + h'(x) \cdot g(x) = e^x \cdot \sin x + \cos x \cdot e^x = e^x \cdot (\sin x + \cos x)

Using the same method, we can proceed with the second degree differentiation:

f ( x ) = e x ( sin x + cos x ) + ( cos x sin x ) e x = e x ( 2 cos x ) = 2 e x cos x f''(x) = e^x \cdot (\sin x + \cos x) + (\cos x - \sin x) \cdot e^x = e^x \cdot (2\cos x) = 2e^x \cdot \cos x

With the factor 2 2 coefficient, the differentiation can continue with the factor remained:

f ( x ) = 2 e x cos x + 2 e x ( sin x ) = 2 e x ( cos x sin x ) f'''(x) = 2e^x \cdot \cos x + 2e^x \cdot (-\sin x) = 2e^x \cdot (\cos x - \sin x)

Finally, we can evaluate the fourth degree of differentiation:

f ( 4 ) ( x ) = 2 e x ( cos x sin x ) + 2 e x ( sin x cos x ) = 2 e x ( 2 sin x ) = 4 e x ( sin x ) f^{(4)}(x) = 2e^x \cdot (\cos x - \sin x) + 2e^x \cdot (-\sin x - \cos x) = 2e^x \cdot (-2 \sin x) = -4e^x \cdot (\sin x)

As we can see, the function f ( 4 ) ( x ) = 4 f ( x ) f^{(4)}(x) = -4 \cdot f(x) . In other words, by differentiation for 4 4 times, such derivative can be evaluated by multiplying the original function f f by a factor of 4 -4 .

Now if we differentiating for 2016 2016 times as stated in the question, the desired derivative can be calculated as shown:

f ( 2016 ) = ( 4 ) 2016 4 f ( x ) = 4 504 f ( x ) = 2 1008 f ( x ) f^{(2016)} = (-4)^{\frac{2016}{4}} \cdot f(x) = 4^{504} \cdot f(x) = 2^{1008} \cdot f(x) .

Therefore, log 2 f ( 2016 ) ( x ) f ( x ) = log 2 2 1008 = 1008 \log_{2} \dfrac{f^{(2016)} (x)}{f(x)} = \log_{2} 2^{1008} = \boxed{1008}

I took out the general Derivative :

f n ( x ) = 2 n / 2 e x sin ( x + n π 4 ) f^{n}(x) = 2^{n/2}\cdot e^x \cdot \sin{\left(x+\frac{n\pi}{4} \right)}

Sabhrant Sachan - 4 years, 10 months ago

f ( x ) = e x sin x = i 2 ( e ( 1 i ) x e ( 1 + i ) x ) f ( 1 ) ( x ) = i 2 ( ( 1 i ) e ( 1 i ) x ( 1 + i ) e ( 1 + i ) x ) f ( 2 ) ( x ) = i 2 ( ( 1 i ) 2 e ( 1 i ) x ( 1 + i ) 2 e ( 1 + i ) x ) f ( 3 ) ( x ) = i 2 ( ( 1 i ) 3 e ( 1 i ) x ( 1 + i ) 3 e ( 1 + i ) x ) . . . = . . . f ( 2016 ) ( x ) = i 2 ( ( 1 i ) 2016 e ( 1 i ) x ( 1 + i ) 2016 e ( 1 + i ) x ) As ( 1 i ) 2 = 2 i , ( 1 + i ) 2 = 2 i = i 2 ( ( 2 i ) 1008 e ( 1 i ) x ( 2 i ) 1008 e ( 1 + i ) x ) And i 4 = 1 = i 2 ( ( 2 ) 1008 e ( 1 i ) x ( 2 ) 1008 e ( 1 + i ) x ) = 2 1008 i 2 ( e ( 1 i ) x e ( 1 + i ) x ) = 2 1008 e x sin x log 2 f ( 2016 ) ( x ) f ( x ) = 1008 \begin{aligned} f(x) & = e^x\sin x \\ & = \frac i2 \left(e^{(1-i)x} - e^{(1+i)x}\right) \\ f^{(1)} (x) & = \frac i2 \left((1-i)e^{(1-i)x} - (1+i)e^{(1+i)x}\right) \\ f^{(2)} (x) & = \frac i2 \left((1-i)^2e^{(1-i)x} - (1+i)^2e^{(1+i)x}\right) \\ f^{(3)} (x) & = \frac i2 \left((1-i)^3e^{(1-i)x} - (1+i)^3 e^{(1+i)x}\right) \\ ... & = \ ... \\ \implies f^{(2016)} (x) & = \frac i2 \left(\color{#3D99F6}{(1-i)^{2016}} e^{(1-i)x} - \color{#3D99F6}{(1+i)^{2016}} e^{(1+i)x}\right) & \small \color{#3D99F6}{\text{As }(1-i)^2 = -2i, \ (1+i)^2 = 2i } \\ & = \frac i2 \left(\color{#3D99F6}{(-2i)^{1008}} e^{(1-i)x} - \color{#3D99F6}{(2i)^{1008}} e^{(1+i)x}\right) & \small \color{#3D99F6}{\text{And } i^4 = 1} \\ & = \frac i2 \left(\color{#3D99F6}{(-2)^{1008}} e^{(1-i)x} - \color{#3D99F6}{(2)^{1008}} e^{(1+i)x}\right) \\ & = 2^{1008} \cdot \frac i2 \left(e^{(1-i)x} - e^{(1+i)x}\right) \\ & = 2^{1008} e^x \sin x \\ \implies \log_2 \frac {f^{(2016)}(x)}{f(x)} & = \boxed{1008} \end{aligned}

Amazing way to solve

Rashi Pratihar - 2 years, 7 months ago

Log in to reply

Glad that you like the solution. Upvote if you have not.

Chew-Seong Cheong - 2 years, 7 months ago
Jam M
Jan 31, 2019

By taking the first few derivatives of f ( x ) = e x sin x f(x) = e^x\sin x , it can be observed that f ( 4 n ) ( x ) = { 2 2 n f ( x ) if 4 n 4 (mod 8) 2 2 n f ( x ) if 4 n 8 (mod 8) f^{(4n)}(x) = \begin{cases} -2^{2n}f(x) \hspace{.2cm} \mbox{if} \hspace{.2cm} 4n \equiv 4 \mbox{(mod 8)}\\ \hspace{.3cm} 2^{2n}f(x) \hspace{.2cm} \mbox{if} \hspace{.2cm} 4n \equiv 8 \mbox{(mod 8)}\\ \end{cases}

Since 8 8 divides 2016 2016 , f ( 2016 ) ( x ) = f ( 4 × 504 ) ( x ) = 2 1008 f ( x ) f^{(2016)}(x) = f^{(4 \times 504)}(x) = 2^{1008}f(x)

log 2 ( f ( 2016 ) ( x ) f ( x ) ) = log 2 ( 2 1008 f ( x ) f ( x ) ) = log 2 ( 2 1008 ) = 1008 \log_2 \left( \dfrac{f^{(2016)}(x)}{f(x)} \right) = \log_2 \left( \dfrac{2^{1008}f(x)}{f(x)} \right) = \log_2 \left(2^{1008}\right) = 1008

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...