Power of JEE 2017 advanced

Calculus Level 4

If I = k = 1 98 k k + 1 k + 1 x ( x + 1 ) d x \displaystyle I=\sum_{k=1}^{98}\int_{k}^{k+1}\frac{k+1}{x(x+1)}dx , then which of the following are correct?

\quad A. I > 49 50 \quad I>\frac{49}{50}

\quad B. I < 49 50 \quad I<\frac{49}{50}

\quad C. I > ln ( 99 ) \quad I>\ln(99)

\quad D. I < ln ( 99 ) \quad I<\ln(99)

B and D B and C A and C A and D

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Feb 15, 2018

I = k = 1 98 k k + 1 k + 1 x ( x + 1 ) d x = k = 1 98 ( k + 1 ) k k + 1 ( 1 x 1 x + 1 ) d x = k = 1 98 ( k + 1 ) [ ln ( x ) ln ( x + 1 ) ] k k + 1 = k = 1 98 ( k + 1 ) ( ln ( k + 1 k + 2 ) ln ( k k + 1 ) ) = k = 1 98 ( ( k + 1 ) ln ( k + 1 k + 2 ) k ln ( k k + 1 ) ln ( k k + 1 ) ) = k = 1 98 ( k + 1 ) ln ( k + 1 k + 2 ) k = 1 98 k ln ( k k + 1 ) k = 1 98 ln k + k = 1 98 ln ( k + 1 ) = k = 2 99 k ln ( k k + 1 ) k = 1 98 k ln ( k k + 1 ) k = 1 98 ln k + k = 2 99 ln k = 99 ln ( 99 100 ) ln ( 1 2 ) ln 1 + ln 99 = ln 99 99 ln ( 100 99 ) + ln 2 \begin{aligned} I & = \sum_{k=1}^{98} \int_k^{k+1} \frac {k+1}{x(x+1)} dx \\ & = \sum_{k=1}^{98} (k+1) \int_k^{k+1} \left(\frac 1x - \frac 1{x+1} \right) dx \\ & = \sum_{k=1}^{98} (k+1) \bigg[ \ln (x) - \ln (x+1) \bigg]_k^{k+1} \\ & = \sum_{k=1}^{98} (k+1) \left(\ln \left(\frac {k+1}{k+2}\right) - \ln \left(\frac k{k+1}\right)\right) \\ & = \sum_{k=1}^{98} \left((k+1) \ln \left(\frac {k+1}{k+2}\right) - k \ln \left(\frac k{k+1}\right) - \ln \left(\frac k{k+1}\right) \right) \\ & = \sum_{\color{#3D99F6}k=1}^{\color{#3D99F6}98} (k+1) \ln \left(\frac {k+1}{k+2}\right) - \sum_{k=1}^{98} k \ln \left(\frac k{k+1}\right) - \sum_{k=1}^{98} \ln k + \sum_{\color{#3D99F6}k=1}^{\color{#3D99F6}98} \ln (k+1) \\ & = \sum_{\color{#D61F06}k=2}^{\color{#D61F06}99} k \ln \left(\frac k{k+1}\right) - \sum_{k=1}^{98} k \ln \left(\frac k{k+1}\right) - \sum_{k=1}^{98} \ln k + \sum_{\color{#D61F06}k=2}^{\color{#D61F06}99} \ln k \\ & = 99 \ln \left(\frac {99}{100}\right) - \ln \left(\frac 12 \right) - \ln 1 + \ln 99 \\ & = \ln 99 - 99 \ln \left(\frac {100}{99} \right) + \ln 2 \end{aligned}

Then we have

I = ln 198 ln ( 1 + 1 99 ) 99 > log 3 81 ln e = 3 > 49 50 \begin{aligned} I & = \ln 198 - \ln \left(1+\frac 1{99}\right)^{99} > \log_3 81 - \ln e = 3 > \frac {49}{50} \end{aligned}

And

I = ln 99 99 ln ( 100 99 ) + ln 2 = ln 99 99 ln 100 + 99 ln 99 + 99 ln 2 1 99 = ln 99 + 99 ln 99 × 2 1 99 100 < ln 99 + 99 ln 100 × 2 1 99 100 = ln 99 + ln 2 99 < ln 99 \begin{aligned} I & = \ln 99 - 99 \ln \left(\frac {100}{99} \right) + \ln 2 = \ln 99 - 99 \ln 100 + 99 \ln 99 + 99 \ln 2^{\frac 1{99}} \\ & = \ln 99 + 99 \ln \frac {99 \times 2^{\frac 1{99}}}{100} < \ln 99 + 99 \ln \frac {100 \times 2^{\frac 1{99}}}{100} = \ln 99 + \frac {\ln 2}{99} < \ln 99 \end{aligned}

Therefore, 49 50 < I < ln 99 \implies \boxed{\frac {49}{50} < I < \ln 99} .

If you don't have a calculator, you can approximate I I by writing it as ln 99 99 ln ( 1 + 1 99 ) + ln 2 = ln 99 ln ( 1 + 1 99 ) 99 + ln 2 \ln 99 - 99\ln\left(1+\frac1{99} \right) + \ln 2 = \ln 99 - \ln\left(1+\frac1{99}\right)^{99} + \ln 2 and ( 1 + 1 99 ) 99 e , \left( 1+\frac1{99}\right)^{99} \approx e, so I I is about ln 99 1 + ln 2. \ln 99 -1 + \ln 2. (If you want something rigorous, you can use the Taylor series for ln ( 1 + x ) \ln(1+x) to get 99 ln ( 1 + 1 99 ) > 99 ( 1 99 1 9 9 2 2 ) , 99 \ln\left( 1+ \frac1{99}\right) > 99\left(\frac1{99} - \frac1{99^2 \cdot 2}\right), so it's greater than 1 1 198 , 1-\frac1{198}, which is close enough.)

Patrick Corn - 3 years, 3 months ago

Log in to reply

Thanks, I was trying to work this out. You are good.

Chew-Seong Cheong - 3 years, 3 months ago

I cheated on the exam for this. I used induction. Instead of keeping the upper limit of the sum to be 98 I kept it as 2 for the initial step. And then assumed the bounds to exist suitably for the given question. For example for 2 I kept the upper and lower limits as l n ( 2 + 1 ) ln(2+1) and 2 / ( 2 + 2 ) 2/(2+2) . Why I wrote those that way will be clear immediately. For n n I kept the bounds as l n ( n + 1 ) ln(n+1) and n / ( n + 2 ) n/(n+2) and henceforth the induction becomes trivial.

I do it sometimes too.....generally in integrals when I am doing with contour integrals or Gaussian integrals.......

Abhisek Mohanty - 4 years ago

But u still didn't get computer science at IIT lol

Sid Patak - 3 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...