Calculator Will Hate You

Find the last two digits of 7 7 7 7 \Large 7^{7^{7^{7}}} ?


The answer is 43.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

7 2 k + 1 3 ( m o d 4 ) for k Z \large \displaystyle 7^{2k+1} \equiv 3 \pmod{4} \text{ for } k \in Z

7 1 7 ( m o d 100 ) , 7 2 49 ( m o d 100 ) , 7 3 43 ( m o d 100 ) , 7 4 1 ( m o d 100 ) \large \displaystyle 7^1 \equiv 7 \pmod{100}, \, 7^2 \equiv 49 \pmod{100}, \, 7^3 \equiv 43 \pmod{100}, \, 7^4 \equiv 1 \pmod{100}

The Cycle repeats.

7 7 7 7 3 ( m o d 4 ) \large \displaystyle 7^{7^{7^{7}}} \equiv 3 \pmod{4}

Since the cycle has period 4 ( m o d 100 ) 4 \pmod{100} , We conclude that

7 7 7 7 43 ( m o d 100 ) \large \displaystyle \color{#D61F06}{7^{7^{7^{7}}}} \equiv \color{#3D99F6}{43} \color{#20A900}{\pmod{100}}

Last 2 digits = 4 3 \huge \displaystyle \therefore \color{#20A900}{\text{Last }2 \text{ digits}} = \color{#D61F06}{4} \color{#3D99F6}{3}

Ha ha, =D nice one. But, this problem's caption should be the opposite of what you wrote unless you are being witty ;)

Abhay Tiwari - 5 years ago

Log in to reply

I don't care.

Samara Simha Reddy - 5 years ago
Chew-Seong Cheong
Jun 15, 2016

Since 7 and 100, ϕ ( 100 ) \phi (100) , and ϕ ( ϕ ( 100 ) ) \phi(\phi(100)) are coprime integers, we can apply Euler's theorem .

7 7 7 7 7 7 7 7 mod 40 (mod 100) ϕ ( 100 ) = 40 7 7 7 7 mod 16 (mod 100) ϕ ( 40 ) = 16 7 7 7 2 × 3 + 1 mod 16 (mod 100) 7 2 × 3 + 1 7 ( 7 2 ) 3 7 ( 49 ) 7 ( 1 ) (mod 16) 7 7 7 mod 40 (mod 100) 7 7 4 + 3 mod 40 (mod 100) 7 4 2401 1 (mod 40) , 7 3 343 23 (mod 40) 7 23 (mod 100) 7 4 × 5 + 3 (mod 100) 7 4 2401 1 (mod 100) , 7 3 343 43 (mod 100) 43 \begin{aligned} \Large 7^{7^{7^7}} & \equiv {7^{7^{7^7} \text{mod } \color{#3D99F6}{40}}} \text{(mod 100)} \quad \quad \small \color{#3D99F6}{\phi (100) = 40} \\ & \equiv 7^{7^{7^7 \text{mod } \color{#3D99F6}{16}}} \text{(mod 100)} \quad \quad \small \color{#3D99F6}{\phi (40) = 16} \\ & \equiv 7^{7^{7^{2\times 3+1} \text{mod } 16}} \text{(mod 100)} \quad \quad \small \color{#3D99F6}{7^{2\times3 + 1} \equiv 7(7^2)^3 \equiv 7(49) \equiv 7(1) \text{ (mod 16)}} \\ & \equiv 7^{7^\color{#3D99F6}{7} \text{mod }40} \text{(mod 100)} \\ & \equiv 7^{7^\color{#3D99F6}{4+3} \text{mod }40} \text{(mod 100)} \quad \quad \small \color{#3D99F6}{7^4 \equiv 2401 \equiv 1\text{ (mod 40)}, 7^3 \equiv 343 \equiv 23 \text{ (mod 40)}} \\ & \equiv 7^{23} \text{(mod 100)} \\ & \equiv 7^{4\times 5+3} \text{(mod 100)} \quad \quad \small \color{#3D99F6}{7^4 \equiv 2401 \equiv 1 \text{ (mod 100)}, 7^3 \equiv 343 \equiv 43 \text{ (mod 100)}} \\ & \equiv \boxed{43} \end{aligned}

Prateek Gupta
Jun 14, 2016

7^7^7^7 means (7)^343.... cyclicity of 7 repeats after 4 so we will divide 343 by 4 and the remainder will be the power we"ll put on 7....... 343/7= remainder is 3. Now 7^3 is 343 So the last two digit will be 43.

Deepansh Jindal
Jun 14, 2016

we can expand 7^7 and get last two digits 43 and if we raise 43 to the power 7 then also the result is 43 so this pattern continues and we get the answer as 43 ....

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...