Power Sum

Find { a 1 , , a k } { 1 , 2 , 3 , 4 , 5 } 1 a 1 a k \displaystyle \sum_{\{a_{1}, \ldots, a_{k}\} \subseteq \{1, 2, 3, 4, 5\}} \frac{1}{a_{1} \cdots a_{k}} , where the sum is over all nonempty subsets of of the set { 1 , 2 , 3 , 4 , 5 } \{1, 2, 3, 4, 5\} .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Peter Macgregor
Apr 2, 2016

We can prove the more general result

{ a 1 , , a k } { 1 , 2 , , n } 1 a 1 a k = n \displaystyle\sum_{\{a_{1},\dots,a_{k}\}\subseteq\{1,2,\dots,n\}}\frac{1}{a_{1}\cdots a_{k}}=n

by mathematical induction.

It is easy to prove that the statement holds for n = 1.

Now suppose that it holds for n = p. On moving from p to (p + 1) we must consider all the subsets which do not include (p + 1) (let's call them the old subsets) plus the new subsets which will include the element (p + 1).

The old subsets are identical to those in the case when n = p. We know from the induction hypothesis that these old subsets contribute p to the new sum.

The new subsets include the set with the single element (p + 1), which contributes 1 p + 1 \frac{1}{p+1} to the new sum.

The rest of the new subsets will consist of one of the old subsets with the addition of the element (p+1). Their total contribution to the new sum will be 1 p + 1 \frac{1}{p+1} times the old sum (which is p by hypothesis)

Combining these three sorts of terms in the new sum we get the total sum for n = p+1 -

p + 1 p + 1 + p p + 1 = p + p + 1 p + 1 = p + 1 p+\frac{1}{p+1}+\frac{p}{p+1}=p+\frac{p+1}{p+1}=p+1 as we had hoped.

Noting that the hypothesis holds for n = 1, we can now invoke the principle of mathematical induction to prove the general case, and then the special result for n = 5 is rather easy!

Aditya Dhawan
Oct 22, 2016

W e d e f i n e a 1 a 2 a 3 . . . . . a k a s t h e s u m o f { a n } t a k e n k a t a t i m e . W e n e e d t o e v a l u a t e S = 1 a 1 + 1 a 1 a 2 + 1 a 1 a 2 a 3 + 1 a 1 a 2 a 3 a 4 + 1 a 1 a 2 a 3 a 4 a 5 , { a n } = { 1 , 2 , 3 , 4 , 5 } N o w S = a 1 + a 1 a 2 + a 1 a 2 a 3 + a 1 a 2 a 3 a 4 + 1 a 1 a 2 a 3 a 4 a 5 = ( 1 + a 1 ) ( 1 + a 2 ) ( 1 + a 3 ) ( 1 + a 4 ) ( 1 + a 5 ) a 1 a 2 a 3 a 4 a 5 a 1 a 2 a 3 a 4 a 5 = 6 ! 5 ! 5 ! = 5 We\quad define\quad \sum { { a }_{ 1 }{ a }_{ 2 }{ a }_{ 3 } } .....{ a }_{ k }\quad as\quad the\quad sum\quad of\quad \left\{ { a }_{ n } \right\} \quad taken\quad k\quad at\quad a\quad time.\quad \\ We\quad need\quad to\quad evaluate\quad S=\sum { \frac { 1 }{ { a }_{ 1 } } } +\sum { \frac { 1 }{ { a }_{ 1 }{ a }_{ 2 } } } +\sum { \frac { 1 }{ { a }_{ 1 }{ a }_{ 2 }{ a }_{ 3 } } + } \sum { \frac { 1 }{ { a }_{ 1 }{ a }_{ 2 }{ a }_{ 3 }{ a }_{ 4 } } } +\frac { 1 }{ { a }_{ 1 }{ a }_{ 2 }{ a }_{ 3 }{ a }_{ 4 }{ a }_{ 5 } } \quad ,\quad \left\{ { a }_{ n } \right\} =\left\{ 1,2,3,4,5 \right\} \\ Now\quad S=\quad \frac { \sum { { a }_{ 1 } } +\sum { { a }_{ 1 }{ a }_{ 2 } } +\sum { { a }_{ 1 }{ a }_{ 2 }{ a }_{ 3 } } +\sum { { a }_{ 1 }{ a }_{ 2 }{ a }_{ 3 }{ a }_{ 4 } } +1 }{ { a }_{ 1 }{ a }_{ 2 }{ a }_{ 3 }{ a }_{ 4 }{ a }_{ 5 } } =\quad \frac { (1+{ a }_{ 1 })(1+{ a }_{ 2 })(1+{ a }_{ 3 })(1+{ a }_{ 4 })(1+{ a }_{ 5 })-{ a }_{ 1 }{ a }_{ 2 }{ a }_{ 3 }{ a }_{ 4 }{ a }_{ 5 } }{ { a }_{ 1 }{ a }_{ 2 }{ a }_{ 3 }{ a }_{ 4 }{ a }_{ 5 } } =\quad \frac { 6!-5! }{ 5! } =\quad \boxed { 5 }

Pulkit Singhvi
May 29, 2016

This summation can be written as ...... [1+(1/1]×[1+(1/2)].............. ×[1+(1/5)]-1

Billy Sugiarto
Apr 2, 2016

Let x x be the value of the summation. Let a n = S = a 1 , a 2 , . . . , a k 1 , 2 , . . . , 5 , S = n a 1 a 2 . . . a k a_{n} = \sum\limits_{ S= { a_{1}, a_{2}, ..., a_{k}} \subseteq {1, 2, ..., 5}, |S|= n} a_{1}a_{2}...a_{k} .

It is easy to simplify that x = a 4 + a 3 + a 2 + a 1 + 1 a 5 x= \frac{a_{4}+ a_{3}+ a_{2}+ a_{1} + 1}{ a_{5}} with a 5 = 120 a_{5} = 120 .

It is easy to obtain a 4 + a 3 + . . . + a 1 + 1 = ( 1 + 1 ) ( 2 + 1 ) ( 3 + 1 ) ( 4 + 1 ) ( 5 + 1 ) 5 ! = 600 a_{4} + a_{3} + ...+ a_{1} + 1 = (1+1)(2+1)(3+1)(4+1)(5+1) - 5! = 600 .

Thus we have x = 600 120 = 5 x = \frac{600}{120} =5 .

I am failing to understand what you are saying.

Please avoid letting your notation do double duty. I don't understand why a 5 { 1 , 2 , 3 , 4 , 5 } a_5 \in \{ 1, 2, 3, 4, 5 \} yields a 5 = 120 a_5 = 120 .

Calvin Lin Staff - 5 years, 2 months ago

Please explain your 3rd line more clearly @Billy Sugiarto ....... I find it interesting

Aniket Sanghi - 5 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...