Power Test

Algebra Level 3

True or False?

\quad There exists a real number x x such that x < x 3 < x 4 < x 2 . x<x^3<x^4<x^2.

True False

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Akshat Sharda
Jul 26, 2016

Relevant wiki: Polynomial Inequalities - Problem Solving - Medium

x 3 x > 0 x ( x 1 ) ( x + 1 ) > 0 x ( 1 , 0 ) ( 1 , ) x 4 x 3 > 0 x 3 ( x 1 ) > 0 x ( , 0 ) ( 1 , ) x 4 x 2 < 0 x 2 ( x 1 ) ( x + 1 ) < 0 x ( 1 , 0 ) ( 0 , 1 ) x ( 1 , 0 ) x^3-x>0\Rightarrow x(x-1)(x+1)>0 \Rightarrow x \in (-1,0)\cup (1,\infty) \\ x^4-x^3>0\Rightarrow x^3(x-1)>0\Rightarrow x\in (-\infty,0)\cup (1,\infty) \\ x^4-x^2<0\Rightarrow x^2(x-1)(x+1)<0 \Rightarrow x\in (-1,0)\cup (0,1) \\ \therefore x\in (-1,0)

J D
Jul 26, 2016

Any value between zero and negative one, exclusive. -1/2 is an example.

Why not -1/2?

Peter van der Linden - 4 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...