Power Tower!

5 4 3 2 1 \Large 5^{4^{3^{2^{1}}}}

Find the last five digits of the number above.


The answer is 90625.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Dec 13, 2017

Let N = 5 4 3 2 1 N = 5^{4^{3^{2^1}}} . We need to find N m o d 100000 N \bmod 100000 . Since gcd ( 5 , 100000 ) 1 \gcd(5,100000) \ne 1 we cannot use the Euler's theorem and we have to consider the factors of 100000, 2 5 = 32 2^5 = 32 and 5 5 = 3125 5^5 = 3125 separately with the Chinese remainder theorem .

Consider factor 32:

N 5 4 9 m o d ϕ ( 32 ) (mod 32) Since gcd ( 5 , 32 ) = 1 , Euler’s theorem applies. 5 4 9 m o d 16 (mod 32) Euler’s totient function ϕ ( 32 ) = 16 5 0 (mod 32) 1 (mod 32) \begin{aligned} N & \equiv 5^{\color{#3D99F6}4^9 \bmod \phi(32)} \text{ (mod 32)} & \small \color{#3D99F6} \text{Since }\gcd(5,32)=1 \text{, Euler's theorem applies.} \\ & \equiv 5^{\color{#3D99F6}4^9 \bmod 16} \text{ (mod 32)} & \small \color{#3D99F6} \text{Euler's totient function }\phi(32) = 16 \\ & \equiv 5^0 \text{ (mod 32)} \\ & \equiv 1 \text{ (mod 32)} \end{aligned}

Consider factor 3125:

N 0 (mod 3125) N 3125 n where n N 3125 n 1 (mod 32) 21 n 1 (mod 32) n 29 \begin{aligned} N & \equiv 0 \text{ (mod 3125)} \\ \implies N & \equiv 3125n & \small \color{#3D99F6} \text{where }n \in \mathbb N \\ \implies 3125n & \equiv 1 \text{ (mod 32)} \\ 21n & \equiv 1 \text{ (mod 32)} \\ \implies n & \equiv 29 \end{aligned}

N 3125 ( 29 ) 90625 (mod 100000) \implies N \equiv 3125(29) \equiv \boxed{90625} \text{ (mod 100000)}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...