Powerful Limit

Calculus Level 5

f ( n ) = r = 0 n ( n r ) r r ( 2 r ) n r \large f(n) = \sum_{r=0}^{n} \dbinom{n}{r} r^r (2-r)^{n-r}

Find the value of the closed form of L = lim n f ( n ) n ! \displaystyle \text{L} = \lim_{n\to\infty} \dfrac{f(n)}{n!} .

Submit your answer as 1000 L \lfloor 1000 \text{L} \rfloor .

You may use a calculator for the final step of your calculation.

Details and assumptions:

  • Assume that we adopt the convention that 0 0 = 1 0^0 = 1 .
  • \lfloor \cdot \rfloor denotes the floor function .


The answer is 7389.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Sep 20, 2016

Note that f ( n ) = r = 0 n ( n r ) r r ( 2 r ) n r = r = 0 n s = 0 n r ( n r ) ( n r s ) 2 s ( 1 ) n r s r n s = 0 r + s n n ! r ! s ! ( n r s ) ! ( 1 ) n r s 2 s r n s = s = 0 n r = 0 n s ( n s ) ( n s r ) ( 1 ) n s r 2 s r n s = s = 0 n ( n s ) 2 s r = 0 n s ( n s r ) ( 1 ) n s r r n s \begin{array}{rcl} \displaystyle f(n) & = & \displaystyle \sum_{r=0}^n \binom{n}{r} r^r (2-r)^{n-r} \; = \; \sum_{r=0}^n \sum_{s=0}^{n-r} \binom{n}{r}\binom{n-r}{s}2^s (-1)^{n-r-s}r^{n-s} \\ & = & \displaystyle \sum_{0 \le r+s \le n} \frac{n!}{r! s! (n-r-s)!} (-1)^{n-r-s}2^s r^{n-s} \; = \; \sum_{s=0}^n \sum_{r=0}^{n-s} \binom{n}{s}\binom{n-s}{r} (-1)^{n-s-r}2^sr^{n-s} \\ & = & \displaystyle \sum_{s=0}^n \binom{n}{s}2^s \sum_{r=0}^{n-s} \binom{n-s}{r} (-1)^{n-s-r}r^{n-s} \end{array} But, using the Inclusion-Exclusion Principle to count the number of bijections from a set with N N elements to itself, r = 0 N ( N r ) ( 1 ) N r r N = N ! N 0 , \sum_{r=0}^N \binom{N}{r} (-1)^{N-r}r^N \; = \; N! \hspace{1cm} N \ge 0 \;, and hence f ( n ) = s = 0 n ( n s ) 2 s ( n s ) ! f ( n ) n ! = s = 0 n 2 s s ! \begin{array}{rcl} \displaystyle f(n) & = & \displaystyle \sum_{s=0}^n \binom{n}{s} 2^s (n-s)! \\ \displaystyle \frac{f(n)}{n!} & = & \displaystyle \sum_{s=0}^n \frac{2^s}{s!} \end{array} and hence lim n f ( n ) n ! = e 2 \lim_{n \to \infty} \frac{f(n)}{n!} \; = \; e^2 making the answer 1000 e 2 = 7389 \lfloor 1000e^2\rfloor = \boxed{7389} .

(+1) Wonderful as usual! We can derive the inclusion-exclusion identity also using the following methods 1) Forward Difference Operator 2) Recurrence + Strong Induction. This identity can also be used to prove Wilson's Theorem for primes.

Ishan Singh - 4 years, 8 months ago

Also, we can replace the 2 2 in the summation with arbitrary a a , the result will be e a e^a .

Ishan Singh - 4 years, 8 months ago

@Mark Hennings , Can't i write 2 n 2^n inside summatio of f(n)?

Priyanshu Mishra - 4 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...