Powerful Product

Calculus Level 5

n = 0 ( 1 2 2 n + 1 1 2 2 n + 1 ) \large \prod _{n=0}^\infty\left(\frac1{2^{2^{n+1}}}-\frac1{2^{2^n}}+1\right)

The above infinite product can be written as A B \frac AB , where A A and B B are coprime positive integers. What is the value of A + B ? A+B?


The answer is 11.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Kenneth Tan
Dec 13, 2016

Notice that 2 2 n + 1 = 2 2 n × 2 = ( 2 2 n ) 2 2^{2^{n+1}}=2^{2^n\times2}=(2^{2^n})^2 , hence we can rewrite the never-ending apple pie above as n = 0 [ ( 1 2 2 n ) 2 1 2 2 n + 1 ] = n = 0 ( 1 2 2 n ) 3 + 1 1 2 2 n + 1 = [ ( 1 2 2 0 ) 3 + 1 ] [ ( 1 2 2 1 ) 3 + 1 ] [ ( 1 2 2 2 ) 3 + 1 ] [ 1 2 2 0 + 1 ] [ 1 2 2 1 + 1 ] [ 1 2 2 2 + 1 ] \begin{aligned} \large\prod _{n=0}^\infty\left[\left(\frac1{2^{2^{n}}}\right)^2-\frac1{2^{2^n}}+1\right] &=\large\prod _{n=0}^\infty\frac{\left(\frac1{2^{2^{n}}}\right)^3+1}{\frac{1}{2^{2^n}}+1}\\ &=\frac{\left[\left(\frac1{2^{2^{0}}}\right)^3+1\right]\left[\left(\frac1{2^{2^{1}}}\right)^3+1\right]\left[\left(\frac1{2^{2^{2}}}\right)^3+1\right]\ldots}{\left[\frac{1}{2^{2^0}}+1\right]\left[\frac{1}{2^{2^1}}+1\right]\left[\frac{1}{2^{2^2}}+1\right]\ldots} \end{aligned}


Consider the numerator, if we multiply it by ( 1 2 2 0 ) 3 1 \left(\frac1{2^{2^{0}}}\right)^3-1 , then we have M = [ ( 1 2 2 0 ) 3 1 ] [ ( 1 2 2 0 ) 3 + 1 ] [ ( 1 2 2 1 ) 3 + 1 ] [ ( 1 2 2 2 ) 3 + 1 ] = [ ( 1 2 2 0 ) 6 1 2 ] [ ( 1 2 2 1 ) 3 + 1 ] [ ( 1 2 2 2 ) 3 + 1 ] = [ ( 1 2 2 1 ) 3 1 ] [ ( 1 2 2 1 ) 3 + 1 ] [ ( 1 2 2 2 ) 3 + 1 ] = [ ( 1 2 2 2 ) 3 1 ] [ ( 1 2 2 2 ) 3 + 1 ] = \begin{aligned} M&=\left[\left(\frac1{2^{2^{0}}}\right)^3-1\right]\left[\left(\frac1{2^{2^{0}}}\right)^3+1\right]\left[\left(\frac1{2^{2^{1}}}\right)^3+1\right]\left[\left(\frac1{2^{2^{2}}}\right)^3+1\right]\ldots \\&=\left[\left(\frac1{2^{2^{0}}}\right)^6-1^2\right]\left[\left(\frac1{2^{2^{1}}}\right)^3+1\right]\left[\left(\frac1{2^{2^{2}}}\right)^3+1\right]\ldots \\&=\left[\left(\frac1{2^{2^{1}}}\right)^3-1\right]\left[\left(\frac1{2^{2^{1}}}\right)^3+1\right]\left[\left(\frac1{2^{2^{2}}}\right)^3+1\right]\ldots \\&=\left[\left(\frac1{2^{2^{2}}}\right)^3-1\right]\left[\left(\frac1{2^{2^{2}}}\right)^3+1\right]\ldots \\&=\ldots \end{aligned} Observe that we are just repeatedly applying the identity ( a b ) ( a + b ) = a 2 b 2 (a-b)(a+b)=a^2-b^2 , thus M = lim k { [ ( 1 2 2 0 ) 3 1 ] n = 0 k [ ( 1 2 2 n ) 3 + 1 ] } = lim k [ ( 1 2 2 k + 1 ) 3 1 ] = 1 \begin{aligned} M&=\lim_{k\to\infty}\left\{\left[\left(\frac1{2^{2^{0}}}\right)^3-1\right]\large\prod_{n=0}^k\left[\left(\frac1{2^{2^{n}}}\right)^3+1\right]\right\} \\&=\lim_{k\to\infty}\left[\left(\frac{1}{2^{2^{k+1}}}\right)^3-1\right] \\&=-1 \end{aligned}


Similarly, consider the denominator, if we multiply it by 1 2 2 0 1 \frac1{2^{2^{0}}}-1 , then we have N = ( 1 2 2 0 1 ) ( 1 2 2 0 + 1 ) ( 1 2 2 1 + 1 ) ( 1 2 2 2 + 1 ) = ( 1 2 2 1 1 ) ( 1 2 2 1 + 1 ) ( 1 2 2 2 + 1 ) = ( 1 2 2 2 1 ) ( 1 2 2 2 + 1 ) = \begin{aligned} N&=\left(\frac1{2^{2^{0}}}-1\right)\left(\frac1{2^{2^{0}}}+1\right)\left(\frac1{2^{2^{1}}}+1\right)\left(\frac1{2^{2^{2}}}+1\right)\ldots \\&=\left(\frac1{2^{2^{1}}}-1\right)\left(\frac1{2^{2^{1}}}+1\right)\left(\frac1{2^{2^{2}}}+1\right)\ldots \\&=\left(\frac1{2^{2^{2}}}-1\right)\left(\frac1{2^{2^{2}}}+1\right)\ldots \\&=\ldots \end{aligned} Again we are just repeatedly applying the identity ( a b ) ( a + b ) = a 2 b 2 (a-b)(a+b)=a^2-b^2 , thus N = lim k [ ( 1 2 2 0 1 ) n = 0 k ( 1 2 2 n + 1 ) ] = lim k ( 1 2 2 k + 1 1 ) = 1 \begin{aligned} N&=\lim_{k\to\infty}\left[\left(\frac1{2^{2^{0}}}-1\right)\large\prod_{n=0}^k\left(\frac1{2^{2^{n}}}+1\right)\right] \\&=\lim_{k\to\infty}\left(\frac{1}{2^{2^{k+1}}}-1\right) \\&=-1 \end{aligned}


Now... n = 0 ( 1 2 2 n + 1 1 2 2 n + 1 ) = [ ( 1 2 2 0 ) 3 + 1 ] [ ( 1 2 2 1 ) 3 + 1 ] [ ( 1 2 2 2 ) 3 + 1 ] [ 1 2 2 0 + 1 ] [ 1 2 2 1 + 1 ] [ 1 2 2 2 + 1 ] = ( 1 2 2 0 1 ) M [ ( 1 2 2 0 ) 3 1 ] N = 1 1 2 1 1 8 = 1 2 7 8 = 4 7 \begin{aligned} \large\prod _{n=0}^\infty\left(\frac1{2^{2^{n+1}}}-\frac1{2^{2^n}}+1\right)&=\frac{\left[\left(\frac1{2^{2^{0}}}\right)^3+1\right]\left[\left(\frac1{2^{2^{1}}}\right)^3+1\right]\left[\left(\frac1{2^{2^{2}}}\right)^3+1\right]\ldots}{\left[\frac{1}{2^{2^0}}+1\right]\left[\frac{1}{2^{2^1}}+1\right]\left[\frac{1}{2^{2^2}}+1\right]\ldots} \\&=\frac{\left(\frac1{2^{2^{0}}}-1\right)M}{\left[\left(\frac1{2^{2^{0}}}\right)^3-1\right]N} \\&=\frac{1-\frac{1}{2}}{1-\frac{1}{8}} \\&=\frac{\frac12}{\frac78} \\&=\frac47 \end{aligned} A + B = 4 + 7 = 11 \therefore A+B=4+7=11

Phew, that was a lot of typing, imma gonna drink ma cup o tea now :P

That was a cool solution

Arnav Das - 4 years, 5 months ago
Akiva Weinberger
May 17, 2015

Hint: Use the fact that x 3 + 1 x + 1 = x 2 x + 1 \dfrac{x^3+1}{x+1}=x^2-x+1 . (Will write up a more complete solution later)

The infinite product is 4 7 \dfrac47 .

It has occurred to me that it's been six months and I have not yet written a solution. I don't think I'll ever get to it.

Akiva Weinberger - 5 years, 6 months ago

Somebody give it's solution

shatabdi mandal - 4 years, 9 months ago

Mind if I give its solution? :)

Kenneth Tan - 4 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...