Powers and Common Tangents.

Calculus Level 3

The problem below is a generalization of a brillant problem of the week.

Let n n be a positive integer and

{ f ( x ) = x 2 n g ( x ) = x 2 n + 1 \large \begin{cases} f(x) = x^{2n} \\ g(x) = x^{2n + 1} \ \end{cases}

The two curves above have a common tangent.

(1) Find four linear functions α ( n ) , β ( n ) , λ ( n ) \alpha(n), \beta(n), \lambda(n) and γ ( n ) \gamma(n) for which the slope m m of the common tangent can be expressed as m = α ( n ) α ( n ) β ( n ) λ ( n ) λ ( n ) γ ( n ) γ ( n ) α ( n ) γ ( n ) m = \dfrac{\alpha(n)^{\alpha(n)\beta(n)}}{\lambda(n)^{\lambda(n)\gamma(n)} \:\ \gamma(n)^{\alpha(n)\gamma(n)}} .

(2) Find the value of n n for which α ( n ) + β ( n ) + λ ( n ) + γ ( n ) = 59 \alpha(n) + \beta(n) + \lambda(n) + \gamma(n) = 59 .


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Dec 8, 2018

f ( a ) = 2 n a 2 n 1 = g ( b ) = ( 2 n + 1 ) b 2 n b = w n a 2 n 1 2 n f'(a) = 2na^{2n - 1} = g'(b) = (2n + 1)b^{2n} \implies b = w_{n}a^{\frac{2n - 1}{2n}} , where w n = ( 2 n 2 n + 1 ) 1 2 n w_{n} = (\dfrac{2n}{2n + 1})^{\frac{1}{2n}} .

A : ( a , a 2 n ) A:(a, a^{2n}) and B : ( w n a 2 n 1 2 n , w n 2 n + 1 a 4 n 2 1 2 n ) B:(w_{n}a^{\frac{2n - 1}{2n}}, w_{n}^{2n + 1}a^{\frac{4n^2 - 1}{2n}}) m A B = a 2 n 1 ( w n 2 n + 1 a 1 2 n w n a 1 2 n ) = 2 n a 2 n 1 \implies m_{AB} = a^{2n - 1}(\dfrac{w_{n}^{2n + 1} - a^{\frac{1}{2n}}}{w_{n} - a^{\frac{1}{2n}}}) = 2na^{2n - 1} \implies

( 2 n 1 ) a 1 2 n = w n ( 2 n w 2 n ) (2n - 1)a^{\frac{1}{2n}} = w_{n}(2n - w^{2n}) \implies a = ( w n ( 2 n w 2 n 2 n 1 ) ) 2 n a = (w_{n}(\dfrac{2n - w^{2n}}{2n - 1}))^{2n}

w n = ( 2 n 2 n + 1 ) 1 2 n w_{n} = (\dfrac{2n}{2n + 1})^{\frac{1}{2n}} \implies

a = ( 2 n 2 n + 1 ) ( 4 n 2 4 n 2 1 ) 2 n m A B = f ( a ) = 2 n ( ( 2 n 2 n + 1 ) ( 4 n 2 4 n 2 1 ) 2 n ) 2 n 1 = a = (\dfrac{2n}{2n + 1})(\dfrac{4n^2}{4n^2 - 1})^{2n} \implies m_{AB} = f'(a) = 2n((\dfrac{2n}{2n + 1})(\dfrac{4n^2}{4n^2 - 1})^{2n})^{2n - 1} =

( 2 n ) 2 n ( 4 n 1 ) ( 2 n + 1 ) ( 2 n + 1 ) ( 2 n 1 ) ( 2 n 1 ) 2 n ( 2 n 1 ) \dfrac{(2n)^{2n(4n - 1)}}{(2n + 1)^{(2n + 1)(2n - 1)} (2n - 1)^{2n(2n - 1)}} = α ( n ) α ( n ) β ( n ) λ ( n ) λ ( n ) γ ( n ) γ ( n ) α ( n ) γ ( n ) = \dfrac{\alpha(n)^{\alpha(n)\beta(n)}}{\lambda(n)^{\lambda(n)\gamma(n)} \:\ \gamma(n)^{\alpha(n)\gamma(n)}}

α ( n ) + β ( n ) + λ ( n ) + γ ( n ) = 10 n 1 = 59 n = 6 \implies \alpha(n) + \beta(n) + \lambda(n) + \gamma(n) = 10n - 1 = 59 \implies n = \boxed{6} .

Below is a graph for case ( n = 2 ) \bf (n = 2) :

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...