Powers and Indices

Algebra Level 2

2017201 6 2 2 ( 20172016 ) ( 20172019 ) + 2017201 9 2 = ? \large 20172016^2- 2(20172016)(20172019) + 20172019^2 = \, ?

40344035 40344035 2017201 6 2 20172016^2 2017201 9 2 20172019^2 9 9

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Md Zuhair
Feb 1, 2017

The expression 2017201 6 2 2 ( 20172016 ) ( 20172019 ) + 2017201 9 2 \large 20172016^2- 2(20172016)(20172019) + 20172019^2 can be stated as a 2 2 a b + b 2 = ( a b ) 2 a^2 - 2ab + b^2 = (a-b)^2

Where a = 20172016 a= 20172016 and b = 20172019 b = 20172019

Hence ( 20172016 20172019 ) 2 (20172016- 20172019)^2 = ( 3 ) 2 (-3)^2 = 3 2 3^2 = 9 \boxed{9} (Answer)

Oleg Turcan
Feb 18, 2017

i f 20172016 = t t h e e x p r e s s i o n c a n b e : t 2 2 t ( t 3 ) + ( t 3 ) 2 = ( t ( t 3 ) ) 2 = ( t t + 3 ) 2 = 9 if\quad { 20172016 }=t\quad \qquad the\quad expression\quad can\quad be:\\ t^{ 2 }-2t\left( t-3 \right) +\left( t-3 \right) ^{ 2 }=\left( t-\left( t-3 \right) \right) ^{ 2 }=\left( t-t+3 \right) ^{ 2 }=\boxed { 9 }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...