Powers of 2 and harmonic numbers

Calculus Level 2

Let H n = 1 + 1 2 + 1 3 + + 1 n H_n = 1+\frac12 + \frac13 + \cdots + \frac1{n} be the n th n^\text{th} harmonic number .

The sum n = 1 H n 2 n = ln ( a ) \displaystyle \sum_{n=1}^\infty \frac{H_n}{2^n} = \ln (a) for some positive integer a . a.

What is a ? a?


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

The serious converges by ratio test.
S = H 1 2 + H 2 4 + H 3 8 + S = \dfrac{H_{1}}{2} + \dfrac{H_{2}}{4} + \dfrac{H_{3}}{8} + \ldots
S 2 = H 1 4 + H 2 8 + H 3 16 + \dfrac{S}{2} =\dfrac{H_{1}}{4} + \dfrac{H_{2}}{8} + \dfrac{H_{3}}{16} + \ldots
Subtracting from the original series and using,
H n H n 1 = 1 n H_{n} - H_{n-1} = \dfrac{1}{n}
S 2 = n = 1 1 n 2 n \dfrac{S}{2} = \displaystyle \sum_{n=1}^{\infty} \dfrac{1}{n2^{n}}
We know that,
ln ( 1 1 x ) = n = 1 x n n \ln\left(\dfrac{1}{1-x}\right) = \displaystyle \sum_{n=1}^{\infty} \dfrac{x^{n}}{n}
Putting x = 1 2 x = \dfrac{1}{2} ( which is in the radius of convergence ) we get,
S 2 = ln ( 2 ) \dfrac{S}{2} =\ln(2)
S = 2 ln ( 2 ) = ln ( 4 ) S = 2\ln(2) = \ln(4)


The generating function of H n H_n is f ( z ) = H n z n = ln ( 1 z ) 1 z f(z)=\sum H_n z^n=-\frac{\ln(1-z)}{1-z} . For z = 1 2 z=\frac{1}{2} this is ln 4 \ln\boxed{4}

Otto Bretscher - 5 years, 1 month ago
J Joseph
Nov 1, 2016

n = 1 H n x n = l n ( 1 x ) 1 x \sum_{n=1}^{\infty} H_n x^{n} = \frac{-ln(1-x)}{1-x}

n = 1 H n 2 n = n = 1 H n ( 1 2 ) n \sum_{n=1}^{\infty} \frac{H_n}{2^{n}} = \sum_{n=1}^{\infty}H_n\left ( \frac{1}{2} \right )^{n}

= l n ( 1 1 2 ) 1 1 2 = \frac{-ln(1-\frac{1}{2})}{1-\frac{1}{2}}

= 2 l n ( 1 2 ) = -2ln(\frac{1}{2})

= 2 ( l n ( 1 ) l n ( 2 ) ) = -2(ln(1) - ln(2))

= 2 l n ( 2 ) = 2ln(2)

= l n ( 4 ) = ln(4)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...