Powers of a a

Algebra Level 3

If a a 2 + 1 = 1 3 \dfrac{a}{a^2+1}= \dfrac{1}{3} , determine

a 3 a 6 + a 5 + a 4 + a 3 + a 2 + a + 1 \large \frac{a^3}{a^6 + a^5 + a^4 + a^3 + a^2 + a + 1}

1 25 \frac{1}{25} 1 36 \frac{1}{36} 1 29 \frac{1}{29} 1 33 \frac{1}{33}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Oct 23, 2017

From what is given:

a a 2 + 1 = 1 3 a 2 + 1 a = 3 a + 1 a = 3 ( a + 1 a ) 2 = 3 2 a 2 + 2 + 1 a 2 = 9 a 2 + 1 a 2 = 7 ( a + 1 a ) 3 = 3 3 a 3 + 3 a + 3 a + 1 a 3 = 27 a 3 + 3 ( 3 ) + 1 a 3 = 27 a 3 + 1 a 3 = 18 \begin{aligned} \frac a{a^2+1} & = \frac 13 \\ \frac {a^2+1}a & = 3 \\ \implies a + \frac 1a & = 3 \\ \left(a + \frac 1a\right)^2 & = 3^2 \\ a^2 + 2 + \frac 1{a^2} & = 9 \\ \implies a^2 + \frac 1{a^2} & = 7 \\ \left(a + \frac 1a\right)^3 & = 3^3 \\ a^3 + 3a + \frac 3a + \frac 1{a^3} & = 27 \\ a^3 + 3(3) + \frac 1{a^3} & = 27 \\ \implies a^3 + \frac 1{a^3} & = 18 \end{aligned}

Therefore, we have:

x = a 3 a 6 + a 5 + a 4 + a 3 + a 2 + a + 1 Divide up and down by a 3 = 1 a 3 + a 2 + a + 1 + 1 a + 1 a 2 + 1 a 3 = 1 18 + 7 + 3 + 1 = 1 29 \begin{aligned} x & = \frac {a^3}{a^6+a^5+a^4+a^3+a^2+a+1} & \small \color{#3D99F6} \text{Divide up and down by }a^3 \\ & = \frac 1{a^3+a^2+a+1 + \frac 1a + \frac 1{a^2} +\frac 1{a^3}} \\ & = \frac 1{18+7+3+1} \\ & = \boxed{\dfrac 1{29}} \end{aligned}

Why are there 2 a 3 a^3 ? Isn't it supposed to be a 2 a^2

Chua Hsuan - 3 years, 7 months ago

Log in to reply

Sorry, a typo.

Chew-Seong Cheong - 3 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...