Powers of Jumbled Square Roots

Level 2

There exist unique integers x x and y y satisfying ( 3 5 ) 3 x + ( 3 5 ) 4 y = 8 (3 - \sqrt{5})^3x + (3 - \sqrt{5})^4y = 8 . Find 10 x y 10x-y .


The answer is 214.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rajen Kapur
Mar 8, 2014

Inverse of (3-√5) is (3+√5)/4. Repeatedly multiplying r.h.s. 8 by this three times gives 9+4√5, which results in two equations: x+3y=9 and -√5y=4. Solving for x and y gives y=-4 and x=21.

Pi Han Goh
Mar 8, 2014

The trick is to apply the properties of golden ratio ϕ = 1 + 5 2 \phi = \frac {1+\sqrt5}{2} , so ϕ 2 = ϕ + 1 = 3 + 5 2 \phi^2 = \phi + 1 = \frac {3 + \sqrt5}{2} and 1 ϕ 2 = 2 3 5 \frac {1}{\phi^2} = \frac {2}{3 - \sqrt5}

( 3 5 ) 3 x + ( 3 5 ) 4 y = 8 8 ( 3 5 2 ) 3 x + 16 ( 3 5 2 ) 4 y = 8 ( 3 5 2 ) 3 x + 2 ( 3 5 2 ) 4 y = 1 ( 1 ϕ 2 ) 3 x + 2 ( 1 ϕ 2 ) 4 y = 1 x ϕ 6 + 2 y ϕ 8 = 1 ϕ 2 x + 2 y = ϕ 8 ( 1 + ϕ ) x + 2 y = ( ϕ 2 ) 4 ϕ x + ( x + 2 y ) = ( ϕ + 1 ) 4 = ϕ 4 + 4 ϕ 3 + 6 ϕ 2 + 4 ϕ + 1 = ( ϕ 2 ) 2 + 4 ϕ ( ϕ 2 + 1 ) + 6 ( ϕ 2 ) + 1 = ( ϕ + 1 ) 2 + 4 ϕ ( ϕ + 2 ) + 6 ( ϕ + 1 ) + 1 = 5 ϕ 2 + 16 ϕ + 8 = 5 ( ϕ + 1 ) + 16 ϕ + 8 = 21 ϕ + 13 \begin{aligned} (3 - \sqrt5)^3 x + (3 -\sqrt5)^4 y & = & 8 \\ 8 \left ( \frac {3 - \sqrt5}{2} \right)^3 x + 16 \left ( \frac {3 - \sqrt5}{2} \right)^4 y & = & 8 \\ \left ( \frac {3 - \sqrt5}{2} \right)^3 x + 2 \left ( \frac {3 - \sqrt5}{2} \right)^4 y & = & 1 \\ \left ( \frac {1}{\phi^2} \right )^3 x + 2 \left ( \frac {1}{\phi^2} \right )^4 y & = & 1 \\ \frac {x}{\phi^6} + \frac {2y}{\phi^8} & = & 1 \\ \phi^2 x + 2y & = & \phi^8 \\ (1+\phi) x + 2y & = & (\phi^2)^4 \\ \phi x + (x+2y) & = & (\phi+ 1)^4 \\ & = & \phi^4 + 4\phi^3 + 6\phi^2 + 4\phi + 1 \\ & = & (\phi^2)^2 + 4\phi (\phi^2 + 1) + 6(\phi^2) + 1 \\ & = & (\phi + 1)^2 + 4\phi (\phi + 2) + 6(\phi + 1) + 1 \\ & = & 5\phi^2 + 16 \phi + 8 \\ & = & 5(\phi + 1) + 16 \phi + 8 \\ & = & 21 \phi + 13 \\ \end{aligned}

Because x x and y y are integers, we just need to compare coefficients:

x = 21 , x + 2 y = 13 y = 4 10 x y = 214 x = 21, x + 2y = 13 \Rightarrow y = -4 \Rightarrow 10x - y = \boxed{214}

I expanded the powers in the given equation to get

72x+376y-5^(1/2) (32x+168y)=8

which simplifies to

9x+47y-5^(1/2)(4x+21y)=1............(1)

Foolishly wondered how can the expression with radical give an integer on the rhs. After seeing the solutions above, I just felt that I forgot to put

4x+21y=0

This with the remaining part in eq.(1) gives

9x+47y=0.

These two yield x=21, y=-4, so that the required answer 10x-y= 214.

Mallesh KS - 1 year ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...