Powers of Polynomials

Level 2

If m 3 12 m n 2 m^3 - 12mn^2 = 40 and 4 n 3 3 m 2 n 4n^3 - 3m^2n = 10, find; m 2 + 4 n 2 m^2 + 4n^2

15 × 2 1 5 15 \times2^\frac{1}{5} 12 × 2 2 3 12 \times2^\frac{2}{3} 10 × 2 1 3 10 \times2^\frac{1}{3} 20 × 2 1 4 20\times2^\frac{1}{4}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Julian Yu
Dec 3, 2018

Squaring the two given equations, we get:

m 6 24 m 4 n 2 + 144 m 2 n 4 = 1600 ( 1 ) m^6-24m^4n^2+144m^2n^4=1600 \hspace{5cm}(1)

16 n 6 24 m 2 n 4 + 9 m 4 n 2 = 100 ( 2 ) 16n^6-24m^2n^4+9m^4n^2=100 \hspace{5cm}(2)

Multiplying equation ( 2 ) (2) by 4 4 , we get:

64 n 6 96 m 2 n 4 + 36 m 4 n 2 = 400 ( 3 ) \displaystyle 64n^6-96m^2n^4+36m^4n^2=400 \hspace{5cm}(3)

Adding equations ( 1 ) (1) and ( 3 ) (3) , we get m 6 + 12 m 4 n 2 + 48 m 2 n 4 + 64 n 6 = ( m 2 + 4 n 2 ) 3 = 2000 m^6+12m^4n^2+48m^2n^4+64n^6=(m^2+4n^2)^3=2000 . Therefore, m 2 + 4 n 2 = 2000 3 = 10 2 3 . m^2+4n^2=\sqrt[3]{2000}=\boxed{10\sqrt[3]{2}}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...