A = 1 − 4 + 2 − 4 + 3 − 4 + 4 − 4 . . . B = 1 − 4 + 3 − 4 + 5 − 4 + 7 − 4 . . .
Find B A .
The answer is of the form q p , where p and q are coprime positive integers. Give answer as p . q . For example, if your answer is 1 0 0 9 9 give it as 99.100.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
A = 1 − 4 + 2 − 4 + 3 − 4 + 4 − 4 . . . . . . . B = 1 − 4 + 3 − 4 + 5 − 4 + 7 − 4 . . . . . . . Therefore, A = B + 2 − 4 + 4 − 4 + 6 − 4 + 8 − 4 . . . . . . . A = B + 2 − 4 ( 1 − 4 + 2 − 4 + 3 − 4 + 4 − 4 . . . . . . . ) A = B + 2 − 4 ( A ) A − 2 − 4 ( A ) = B A ( 1 − 2 − 4 ) = B A ( 1 − 1 / 1 6 ) = B A ( 1 5 / 1 6 ) = B A / B = 1 6 / 1 5
=16.15 as required
Problem Loading...
Note Loading...
Set Loading...
B = 1 − 4 + 3 − 4 + 5 − 4 + 7 − 4 + . . . = 1 − 4 + 2 − 4 + 3 − 4 + 4 − 4 + 5 − 4 + 6 − 4 + 7 − 4 + . . . − ( 2 − 4 + 4 − 4 + 6 − 4 + 8 − 4 + . . . ) = 1 − 4 + 2 − 4 + 3 − 4 + 4 − 4 + . . . − 2 − 4 ( 1 − 4 + 2 − 4 + 3 − 4 + 4 − 4 + . . . ) = A − 1 6 1 A = 1 6 1 5
⟹ B A = 1 5 1 6 ⟹ p . q = 1 6 . 1 5 .