Practice #5

Algebra Level 4

( a + b + c ) ( 1 a + b + 1 b + c + 1 c + a ) \large (a+b+c)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)

If a a , b b , and c c are positive real numbers, find the minimum value of the expression above.


The answer is 4.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Satwik Murarka
Apr 23, 2017

Solution:

For a , b , c > 0 \large\boxed{a,b,c>0}

By Titu's Lemma ,

( 1 a + b + 1 b + c + 1 c + a ) ( 1 + 1 + 1 ) 2 a + b + b + c + c + a \begin{aligned}\large\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)&\ge \large \dfrac{(1+1+1)^{2}}{a+b+b+c+c+a}\end{aligned}

Multiplying by a + b + c a+b+c ,

( a + b + c ) ( 1 a + b + 1 b + c + 1 c + a ) ( a + b + c ) × ( 1 + 1 + 1 ) 2 2 ( a + b + c ) 9 2 = 4.5 \begin{aligned}\large(a+b+c)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)&\ge \large\cancel{(a+b+c)}\times \dfrac{(1+1+1)^{2}}{2\cancel{(a+b+c)}}\\ &\ge\dfrac{9}{2}\\ &=4.5\end{aligned}

Minimum Value: 4.5 \boxed{4.5}

Chew-Seong Cheong
Apr 24, 2017

By AM-HM inequality :

3 1 a + b + 1 b + c + 1 c + a a + b + b + c + c + a 3 1 a + b + 1 b + c + 1 c + a 9 2 ( a + b + c ) ( a + b + c ) ( 1 a + b + 1 b + c + 1 c + a ) 9 2 = 4.5 \begin{aligned} \frac 3{\dfrac 1{a+b}+\dfrac 1{b+c}+\dfrac 1{c+a}} & \le \frac {a+b+b+c+c+a}3 \\ \frac 1{a+b}+\frac 1{b+c}+\frac 1{c+a} & \ge \frac 9{2(a+b+c)} \\ \implies (a+b+c) \left(\frac 1{a+b}+\frac 1{b+c}+\frac 1{c+a}\right) & \ge \frac 92 = \boxed{4.5} \end{aligned}

Freddie Hand
Apr 23, 2017

( a + b + c ) ( 1 a + b + 1 b + c + 1 c + a ) = a + b a + b + c a + b + b + c b + c + a b + c + b c + a + c + a c + a = c a + b + a b + c + b c + a + 3 (a+b+c)(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a})=\frac{a+b}{a+b}+\frac{c}{a+b}+\frac{b+c}{b+c}+\frac{a}{b+c}+\frac{b}{c+a}+\frac{c+a}{c+a}=\frac{c}{a+b}+\frac{a}{b+c}+\frac{b}{c+a}+3

c a + b + a b + c + b c + a 1.5 \frac{c}{a+b}+\frac{a}{b+c}+\frac{b}{c+a}\geq 1.5 (by Nesbitt's inequality)

so the minimum value of ( a + b + c ) ( 1 a + b + 1 b + c + 1 c + a ) (a+b+c)(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}) is 3 + 1.5 = 4.5 3+1.5=4.5

How do u know that the second one has minimum 1.5 ?

Kushal Bose - 4 years, 1 month ago

Log in to reply

It's Nesbitt Inequality

Fidel Simanjuntak - 4 years, 1 month ago

It's a well-known theorem but I can't remember the name

Freddie Hand - 4 years, 1 month ago

Log in to reply

If you add this proof it will be better

Kushal Bose - 4 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...