Practice: differentiation

Calculus Level 1

Let f ( x ) = cos 2 x + sin 2 x f(x)=\cos^2x+\sin^2x , find f ( x ) f'(x) .

4 cos x + 2 cos 2 x sin 2 x + 4 sin x 4\cos x+2\cos^2x\sin^2x+4\sin x 1 1 0 0 cos 2 ( sin 2 x ) \cos^2(\sin^2x)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

It's really simple if you assume you were given the identity cos 2 x + sin 2 x = 1 \cos^2x+\sin^2x=1 . Then the derivative of a constant is 0 0 and thus f ( x ) = 0 f'(x)=0 .

If not, you may pursue like this: d d x ( cos 2 x + sin 2 x ) = d d x ( cos x cos x ) + d d x ( sin x sin x ) = cos x ( sin x ) + ( sin x ) cos x + cos x sin x + cos x sin x by the product rule = 2 cos x sin x 2 cos x sin x = 0. \begin{aligned} \dfrac{\mathrm d}{\mathrm dx}(\cos^2x+\sin^2x)&=\dfrac{\mathrm d}{\mathrm dx}(\cos x\cos x)+\dfrac{\mathrm d}{\mathrm dx}(\sin x\sin x) \\ &=\cos x(-\sin x)+(-\sin x)\cos x+\cos x\sin x+\cos x\sin x \quad\text{by the product rule}\\ &=2\cos x\sin x -2\cos x\sin x \\ &=0. \end{aligned}

Please, note that although perfectly correct, doing anything besides understanding that cos^2(x) + sin^2(x) is a constant is a waste of time and should be avoided at all costs during a test or exam.

Bernardo Sulzbach - 6 years, 12 months ago

If you want to actually manually find the derivative, just use the chain rule, don't even do the product rule...

Hobart Pao - 5 years, 7 months ago
Oli Hohman
Mar 23, 2015

f'(x) = -2 cos(x) sin(x) + 2*sin(x)cos(x)

[cos(x) sin(x)] (-2+2) = 0

Sunny Sahu
Jul 12, 2014

­ I f y o u w e r e g i v e n t h e a s s u m p t i o n t h a t s i n 2 x + c o s 2 x = 1 , t h e d e r i v a t i v e o f f ( x ) w o u l d b e e a s y t o a p p r o a c h f o r t h e u s e r ( s ) f ( x ) = 1 , d d x ( 1 ) = 0 If\quad you\quad were\quad given\quad the\quad assumption\quad that\quad sin^{ 2 }x\quad +\quad cos^{ 2 }x=1,\quad the\quad derivative\quad of\quad f(x)\quad would\quad be\quad easy\quad to\quad approach\quad for\quad the\quad user(s)\\ f(x)=1,\quad \frac { d }{ dx } (1)=0

cos^2 x +sin^2 x =1 .Thus, d/dx(1) =0

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...