Practice Limit

Calculus Level 3

Evaluate lim n ( n ! ) 1 n 2 \large \lim_{n \to \infty} \left( n! \right)^{\frac{1}{n^2}}


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Chew-Seong Cheong
Jun 11, 2019

L = lim n ( n ! ) 1 n 2 By Stirling’s formula: n ! 2 π n ( n e ) n = lim n ( 2 π n ( n e ) n ) 1 n 2 = lim n ( 2 π ) 1 2 n 2 e 1 n n 1 n + 1 2 n 2 = lim n n 1 n + 1 2 n 2 = lim n exp ( ( 1 n + 1 2 n 2 ) ln n ) = exp ( lim n ( ln n n + ln n 2 n 2 ) ) A / case L’H o ˆ pital’s rule applies = exp ( lim n ( 1 n 1 + 1 n 4 n ) ) Differentiate up and down w.r.t. n = e 0 = 1 \begin{aligned} L & = \lim_{n \to \infty} ({\color{#3D99F6}n!})^{\frac 1{n^2}} & \small \color{#3D99F6} \text{By Stirling's formula: }n! \sim \sqrt{2\pi n} \left(\frac ne \right)^n \\ & = \lim_{n \to \infty} \left({\color{#3D99F6}\sqrt{2\pi n} \left(\frac ne \right)^n}\right)^{\frac 1{n^2}} \\ & = \lim_{n \to \infty} (2\pi)^{\frac 1{2n^2}} e^{-\frac 1n} n^{\frac 1n + \frac 1{2n^2}} \\ & = \lim_{n \to \infty} n^{\frac 1n + \frac 1{2n^2}} \\ & = \lim_{n \to \infty} \exp \left(\left(\frac 1n + \frac 1{2n^2}\right) \ln n\right) \\ & = \exp \left(\lim_{n \to \infty} \left(\frac {\ln n}n + \frac {\ln n}{2n^2} \right) \right) & \small \color{#3D99F6} \text{A }\infty/\infty \text{ case L'Hôpital's rule applies} \\ & = \exp \left(\lim_{n \to \infty} \left(\frac {\frac 1n}1 + \frac {\frac 1n}{4n} \right) \right) & \small \color{#3D99F6} \text{Differentiate up and down w.r.t. }n \\ & = e^0 = \boxed 1 \end{aligned}


References :

Chris Lewis
Jun 11, 2019

Stirling's approximation is log n ! = n log n n + O ( n ) \log{n!}=n\log{n}-n+O(n) ; so log n ! 1 n 2 = 1 n log n 1 n + O ( 1 n ) 0 \log{n!^{\frac{1}{n^2}}}=\frac{1}{n} \log{n}-\frac{1}{n}+O \left( \frac{1}{n} \right) \to 0 as n n\to \infty ; hence the limit is 1 \boxed1 .

Aman Rajput
Jun 11, 2019

Let y = lim n ( n ! ) 1 n 2 y=\lim _{n \to \infty}\Large(n!)^{\large {\frac{1}{n^2}}} Therefore ln y = lim n 1 n 2 r = 0 n 1 ln ( n r ) \ln y=\lim _{n \to \infty}\frac{1}{n^2}\sum_{r=0}^{n-1}\ln(n-r) ln y = lim n ln n n 2 1 n r = 0 n 1 1 n ln ( 1 r n ) \ln y=\lim _{n \to \infty}\frac{\ln n}{n^2} - \frac1{n}\sum_{r=0}^{n-1}\frac1n\ln(1-\frac{r}{n}) ln y = 0 lim n 1 n 0 1 ln ( 1 x ) d x \ln y=0- \lim _{n \to \infty}\frac1{n}\int_{0}^{1}\ln(1-x)dx ln y = 0 lim n 1 n ( 1 ) \ln y=0- \lim _{n \to \infty}\frac1{n}(-1) ln y = 0 0 \ln y=0- 0 y = e 0 = 1 y=e^0=\boxed{1}


Alternate: ( n ! ) 1 n 2 ( n n ) 1 n 2 n 1 n 1 \Large(n!)^{\large {\frac{1}{n^2}}} \leq (n^n)^{\frac{1}{n^2}} \leq n^{\frac1 n}\to 1

For the alternate solution you are saying that L = ( n ! ) 1 n 2 ( n ) 1 n 1 L=\displaystyle(n!)^{\frac{1}{n^2}}\le(n)^{\frac{1}{n}}\le 1 , hence the limit L L is less than equal to 1 1 however, how does this prove that the limit is 1 1 , since you haven't bounded the limit L L on both sides, nor have you used sandwich theorem successively.

Sarthak Sahoo - 1 year ago
CodeCrafter 1
Jun 16, 2019

1 n 2 \frac { 1 }{ { n }^{ 2 } } tends clearly to 0 (for n n grows up to infinity). And a n y t h i n g E l s e T h a n Z e r o 0 = 1 { anythingElseThanZero }^{ 0 }=1 . Thus the answer is 1.

Is this way of thinking wrong, and fortunatly leads to the correct answer in this case? And if it is wrong, why ? I'm a little bit confused, because all answers are way more complicated than this one.

wrong thinking ...try this ( 1 + n ) 1 / n (1+n)^{1/n} when n tends to infintity

Aman Rajput - 1 year, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...