Practice: nice limit.

Calculus Level 1

Evaluate the following limit: lim x 0 tan x x . \lim\limits_{x\to0}\dfrac{\tan x}{x}.


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

lim x 0 tan ( x ) x = lim x 0 ( tan ( x ) 0 x 0 ) = lim x 0 ( tan ( x ) tan ( 0 ) x 0 ) \displaystyle \lim \limits_{x\to 0}\frac{\tan (x)}{x}=\lim \limits_{x\to 0}\left(\frac{\tan (x)-0}{x-0}\right)=\lim \limits_{x\to 0}\left(\frac{\tan(x)-\tan(0)}{x-0}\right) which is the definition of the derivative evaluated at 0 0 . We know that: d d x tan x = sec 2 x . \dfrac{\mathrm d}{\mathrm dx}\tan x=\sec^2 x. Therefore our limit equals: sec 2 ( 0 ) = 1 cos 2 ( 0 ) = 1 1 = 1. \sec^2(0)=\dfrac{1}{\cos^2(0)}=\dfrac11=1.

Hobart Pao
Nov 11, 2015

lim x 0 tan x x = ( lim x 0 sin x x ) ( lim x 0 1 cos x ) \lim_{x \rightarrow 0} \frac{\tan x}{x} = \left( \lim_{x \rightarrow 0}\frac{\sin x}{x} \right) \left( \lim_{x \rightarrow 0} \frac{1}{\cos x} \right) = 1 1 = 1 \cdot 1 = 1 = \boxed{1}

Moniqua Brown
Aug 14, 2015

I put no thought into this

Lim(x-->0) tgx/x=

Lim(x-->0) senx/cosx/x=

Lim(x-->0) senx/cosx.1/x=

Lim(x-->0) senx/xcosx=

Lim(x-->0) senx/x.1/cosx=

Lim(x-->0) senx/x.Lim(x-->0) 1/cosx=

1.1/cos0=

1.1/1=

1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...